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Abstract

I propose a dynamic factor model with time-varying skewness to assess asymmetric

risk around the economic outlook across a set of macroeconomic aggregates. Applied

to U.S. data, the model shows that macroeconomic skewness is procyclical, displays

significant independent variations from GDP growth skewness, and does not require

conditioning on financial variables to manifest. Compared to univariate benchmarks,

the model improves the detection of downside risk to growth and delivers more accu-

rate predictive distributions, especially during downturns. These findings underscore

the value of using a richer information set to quantify the balance of macroeconomic

risks.
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1 Introduction

In recent years, central banks have increasingly adopted a risk management perspective in

the formulation of monetary policy. Rather than considering solely the most likely macroe-

conomic outcome, policymakers often take into account the full distribution of possible out-

comes, placing particular attention on tail risks. Central banks discuss whether they see

risks around the outlook as balanced, on the upside or on the downside.

This shift in perspective has spurred the development of empirical tools designed to

quantify asymmetric risks to real gross domestic product (GDP) growth. A prominent

example is the growth-at-risk (GaR) framework developed by Adrian, Boyarchenko, and

Giannone (2019), which uses quantile regressions to show that risk to real GDP growth

becomes more left-skewed when financial conditions tighten. Related work has employed

alternative methods, such as stochastic volatility or Markov-switching models.1

Although the literature has made important progress in documenting time-varying asym-

metric risks to real GDP growth, much less attention has been paid to asymmetric risks for

the broader economy. GDP growth, while central to understanding the business cycle, re-

flects only a single dimension of economic activity. It does not capture the broader array

of economic indicators — such as output, employment, and sales — that summarize the

macroeconomy. Consequently, using only GDP growth to assess the balance of macroeco-

nomic risks can obscure asymmetries in other critical areas that also reflect broader economic

risks.

Against this background, I propose and illustrate a framework for the assessment of

broad-based macroeconomic risks in a systematic and replicable manner. My framework

1A growing and non-exhaustive list of papers includes Giglio, Kelly, and Pruitt (2016), Plagborg-Møller,
Reichlin, Ricco, and Hasenzagl (2020), Adrian, Grinberg, Liang, Malik, and Yu (2022), Caldara, Cascaldi-
Garcia, Cuba-Borda, and Loria (2022), Lhuissier (2022), Wolf (2023), Caldara, Scotti, and Zhong (2024),
Carriero, Clark, and Marcellino (2024), Delle Monache, De Polis, and Petrella (2024), Forni, Gambetti, and
Sala (2024), Loria, Matthes, and Zhang (2024) and Castelnuovo and Mori (2025).
More broadly, there is an increasing literature dealing with fluctuations in asymmetric macroeconomic

shocks. Notable examples include Rietz (1988), Barro (2009), Barro and Ursúa (2012), Gabaix (2012),
Gourio (2012), Busch, Domeij, Guvenen, and Madera (2022), Cai and Guerrón-Quintana (2023), Salgado,
Guvenen, and Bloom (2023) and Bekaert, Engstrom, and Ermolov (forthcoming).
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has three key ingredients. First, I work with a dynamic factor model (DFM) that treats

economic activity as a latent factor, inferred from a set of macroeconomic indicators. This

approach aligns with the theoretical perspective (e.g., Lucas, 1977) that the business cycle

is not captured by any single observable series but rather reflects the shared dynamics un-

derlying many indicators. By extracting a common factor, the model provides a coherent

representation of the aggregate economy. Second, I assume an asymmetric distribution for

the factor disturbances. Specifically, I employ the closed skew-normal distribution developed

by González-Faŕıas, Domı́nguez-Molina, and Gupta (2004), which allows for departure from

symmetry. Beyond introducing skewness, this distribution remains closed under marginal-

ization and conditioning, thereby preserving key tractability features. Third, I allow for

time variation in the parameters of the factor distribution. Time variation is modeled as

a Markov-switching process, following Hamilton (1989)’s work. The inclusion of a Markov

switching structure is particularly valuable in this context, as it allows the model to capture

abrupt changes in the behavior of macroeconomic data, such as those typically observed

around recessions.

Together, these components allow for capturing business-cycle variation in the conditional

distribution and higher order moments of the common macroeconomic factor. In particular,

a measure, or index, of macroeconomic skewness can be constructed by deriving analytically

the conditional skewness of the macroeconomic factor, which reflects variations in the balance

of risks of a set of macroeconomic aggregates. Although the model is neither linear nor

Gaussian, it can be estimated by a modified Kalman filter that I develop in the paper. Using

synthetic data, I demonstrate the effectiveness of the filtering and estimation procedure in

the online Appendix.

I apply my general framework to U.S. data. I use a set of four macroeconomic aggregates

(i.e., real GDP growth, real personal income, real manufacturing and trade sales, and em-

ployment), which are the same four sectoral variables typically utilized in this literature (e.g.,

Stock and Watson, 1991; Chauvet, 1998). My evidence shows substantial cyclical variation
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in the broad-based balance of risks: macroeconomic skewness displays a procyclical pattern,

with a tendency to rapidly decline to negative territory during downturns and to rise during

expansions. Skewness tends also to decline in anticipations of recessions.

Although my measure shares some commonalities with skewness computed solely from

GDP growth, it also exhibits substantial differences, indicating that GDP-based skewness

does not fully capture economy-wide asymmetric risks. Furthermore, the measure is par-

tially correlated with GDP growth skewness that conditions on past economic and financial

conditions (e.g., Adrian, Boyarchenko, and Giannone, 2019). This is important because it

suggests that financial conditions are not necessarily a driver of asymmetric macroeconomic

risks.

To evaluate the practical relevance of the skewness measure produced by the model, I

assess the model’s out-of-sample performance in predicting risks to GDP growth. The focus

lies on whether incorporating a broad set of macroeconomic indicators via my framework im-

proves predictive accuracy relative to univariate benchmark approaches: a univariate version

of the model and the quantile regression framework of Adrian, Boyarchenko, and Giannone

(2019). My framework delivers sharper signals of downside risk around U.S. recessions, par-

ticularly the 2001 and 2008 episodes, when univariate benchmark models either mis-measure

downside risks or understate recession probabilities. These improvements reflect the value

of leveraging information from multiple macroeconomic indicators beyond GDP alone.

A formal forecast evaluation confirms the model’s relative gains. While full-sample im-

provements in density and quantile forecast metrics are modest and statistically insignificant,

the model clearly outperforms benchmarks during recession periods. Log scores improve sig-

nificantly over univariate benchmarks, and the model demonstrates better accuracy in pre-

dicting the lower tail of GDP growth. Moreover, calibration analysis confirms the reliability

of the forecasts, showing that they generally align well with actual economic outcomes. These

findings underscore the usefulness of the proposed framework for tracking and quantifying

macroeconomic risks.
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Relation to other studies. My work adds to the limited body of research dedicated to

the assessment of broad-based macroeconomic risks. Caldara, Mumtaz, and Zhong (2024)

uses a DFM with stochastic volatility to quantify risk around the outlook using a broad

dataset of macroeconomic and financial indicators. The authors provide evidence of asym-

metric risk dynamics in the common factors, in the sense that downside risk varies more

over time than upside risk. This arises from conditional predictive distributions that are

symmetric and subject to simultaneous changes in mean and variance. My results are com-

plementary to this paper as I provide evidence of time variation in the macroeconomic factor

skewness, and thus in the broad-based balance of risks. Most closely related to my work

is the paper by Iseringhausen, Petrella, and Theodoridis (forthcoming), which measures

broad-based macroeconomic skewness using principal component analysis applied to a set

of variable-specific skewness measures. Compared to my method, this approach has the

advantage of using a large dataset containing 210 time series, thus providing a measure of

macroeconomic skewness for the broader economy. The strength of my method, instead, lies

in proposing a model-based alternative that leverages the structure of the transition equation

for the estimation of the macroeconomic factor and its time-varying skewness.

From a methodological standpoint, this paper is related to an existing literature on DFMs,

which have been instrumental in capturing commonalities across sectors or economies (e.g.,

Stock and Watson, 1991; Kose, Otrok, and Whiteman, 2003; Ciccarelli and Mojon, 2010).

A number of studies has extended the standard DFM approach by allowing time-varying

parameters. Building upon ideas in Kim (1993), Kim and Yoo (1995) and Chauvet (1998)

propose a Markov-switching DFM of coincident economic indicators. As an alternative

to Markov-switching models, the literature has also considered model parameters evolving

according to a multivariate autoregressive process. For example, Del Negro and Otrok (2008)

and Mumtaz and Surico (2012) estimate DFMs with time-varying parameters and stochastic

volatility. Antolin-Diaz, Drechsel, and Petrella (2017) propose a DFM including time-varying

long-run growth and stochastic volatility, and Antolin-Diaz, Drechsel, and Petrella (2024)
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further introduce Student-t distributed outliers. Guerrón-Quintana, Khazanov, and Zhong

(2024) estimate DFMs that allow for general nonlinearities in the transition and measurement

equations. However, none of these papers explicitly consider time variation beyond the first

two moments. To the best of my knowledge, my paper is the first to incorporate time-varying

skewness within a DFM framework.

The plan of the paper is as follows. Section 2 provides a detailed statement of the dynamic

factor framework and in Section 3 I represent it as a state-space filtering problem. Section

4 discusses the data, model implementation, and adjustments to incorporate the Covid-19

period. Section 5 presents the estimates of the model and Section 6 reports the resulting

macroeconomic skewness and discusses how it differs from alternative skewness measures.

Section 7 reports the results of out-of-sample forecasting exercises. Section 8 concludes the

paper.

2 The Modeling Framework

Here, I propose a DFM that allows the factor distribution to be time-varying and asymmet-

ric. While the model itself is conceptually straightforward, its features introduce significant

complexity in the extraction of the latent factor and in the estimation of parameters of the

model — an issue addressed in detail in the next section of the paper.

Let yit denote the ith macroeconomic indicator at date t, which consists of an indi-

vidual component zit and a linear combination of current and lagged values of a common

macroeconomic factor nt:

yit = γi(L)nt + zit, (1)

with γi(L) is a scalar lag polynomial, L denotes the lag operator, i = 1, . . . , N , and t =

1, . . . , T .

The evolution of the idiosyncratic term zit can be described by a Gaussian autoregressive
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(AR) representation:

ψi(L)zit = ςit, (2)

ςit ∼ normal
(
0, σ2

i,ς

)
, (3)

where normal (a, b) refers to the normal probability density function (pdf) with mean a and

covariance matrix b.

The common factor is assumed to be generated by a skewed AR process with Markov-

switching:

ϕ(L)nt = ϑt, (4)

ϑt ∼ closed skew-normal(µslocationt ,ϑ, σ
2
sscalet ,ϑ, αsshapet ,ϑ, 0, 1), (5)

where closed skew-normal (µ,Σ,Γ,ν,∆) refers to the closed skew-normal distribution in-

troduced by González-Faŕıas, Domı́nguez-Molina, and Gupta (2004), with µ the location

parameter, Σ the scale parameter, Γ the shape parameter governing the skewness, and ν

and ∆ two parameters which are opens to interpretation. This distribution allows for depar-

ture from symmetry and has the advantage of being closed under marginalization, conditional

distributions, linear transformation, sums of independent random variables from this family,

and joint distribution of independent random variables in this family.2

2Compared to the normal distribution, the closed skew-normal is a distribution that has several additional
parameters: a shape parameter Γ ∈ R, which allows for possible deviation from symmetry, and two other
parameters ν ∈ R and ∆ ∈ R, which are opens to interpretation. The two latter parameters are essential
because they allow for closure of the distribution under conditioning and marginalization. A random vector
Y distributed according to the multivariate closed skew-normal with parameters: µ, Σ, Γ, ν, ∆, denoted
by Y ∼ closed skew-normal (µ,Σ,Γ,ν,∆) has the probability density function given by:

p(Y |µ,Σ,Γ,ν,∆) =
Φ (Γ(Y − µ);ν,∆)

Φ (0;ν,∆+ ΓΣΓ′)
ϕ(Y ;µ,Σ),

where Φ(.;m,S) is the cumulative density function of the multivariate normal distribution with expectation
vector m and covariance matrix S; and ϕ(.;µ,Σ) denotes the probability density function of a multivariate
normal distribution with expectation vector µ and covariance matrix Σ. If the shape parameter is equal to
zero, then the density of Y is a multivariate normal distribution with mean µ, and variance Σ. Another
special case is given by y ∼ closed skew-normal (0, 1, γ, 0, 1), which corresponds to the univariate standardized
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Each parameter of the factor distribution (location, scale, and shape) is dependent upon

an unobserved variable sht , with h ∈ {location, scale, shape}, which is an exogenous k-states

first-order Markov process with the following transition matrix P h:

P h =



ph1,1 ph1,2 · · · ph1,k

ph2,1 ph2,2 · · · ph2,k
...

...
. . .

...

phk,1 phk,2 · · · phk,k


, (6)

where phi,j = Pr(sht = j|sht−1 = i) denotes the transition probability that sht is equal to j

given that sht−1 is equal to i, with i, j ∈ {1, . . . , k}, phi,j ≥ 0 and
∑k

j=1 p
h
i,j = 1.3 In this

way, each parameter can independently change over time according to separate Markov pro-

cesses. Therefore, the times of changes in one parameter type is stochastically independent

of changes in another type, as there is no inherent reason to assume simultaneous changes

across all parameters of the distribution. In the online Appendix, I provide evidence that

the specification of independent changes is preferred by the data over that of simultaneous

changes.4

With the introduction of three-independent Markov-switching processes, the overall tran-

sition matrix P becomes:

P = P location ⊗ P scale ⊗ P shape,

with ⊗ denotes the Kronecker product.

Although the model is neither linear nor Gaussian, a basic filtering algorithm can be

obtained and used as the basis for estimation. This is the objective of the next section.

skew-normal distribution of Azzalini (1985, 1986). See, for example, Genton (2004) for more details.
3A natural extension would be to allow transition probabilities to vary over time using exogenous ex-

planatory variables (see Filardo, 1994). Although this approach can be fruitful, it is beyond the scope of the
present work.

4Furthermore, Lhuissier (2022) demonstrates that allowing for three independent Markov shifts in lo-
cation, scale and shape parameters offers a more accurate description of real GDP growth compared to
synchronized-chains models. Similarly, Sims (2001) and Lhuissier and Zabelina (2015) find that allowing
independent transitions for variance and coefficient regimes provides the best fit.

7



3 State-space Representation, Basic Filtering, and Es-

timation

In this section, I discuss my model from a state-space perspective, including filtering and

estimation.

3.1 State-space Representation

My model is trivially cast in state-space form with regime-switching as

yt = Hstxt + εt, t = 1, . . . , T, (7)

xt = Fstxt−1 + ηt, (8)

εt ∼ normal (µst,ε,Σst,ε) , (9)

ηt ∼ closed skew-normal (µst,η,Σst,η,Γst,η,νst,η,∆st,η) , (10)

pi,j = Pr(st = j|st−1 = i), i, j = 1, . . . , K, (11)

where yt is an N × 1 vector of observed variables, xt is an J × 1 vector of state variables,

εt and ηt are vectors of measurement and transition shocks, containing ςit and ϑt. In the

online Appendix, I outline precisely the state space form of the proposed DFM.

The model described by equations (7) to (11) becomes the skewed state-space model

with Markov-switching. The model includes, as special cases, the Kim (1994)’s Gaussian

Markov-switching state-space model if Γst,η = 0, νst,η = 0 and ∆st,η = I, and the constant-

parameters skewed state-space model proposed by Naveau, Genton, and Shen (2005), Rezaie

and Eidsvik (2014), and Guljanov, Mutschler, and Trede (2025) when the index st is dropped

from parameters.
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3.2 Basic filtering

Suppose the parameters of the model specified in the previous section are known. Let

ξt−1 =
(
y′
t−1,y

′
t−2, . . . ,y

′
1

)′
denotes the vector of observations available as of time t − 1. In

the standard derivation of the skewed Kalman filter for a fixed-coefficient state-space model

(Naveau, Genton, and Shen, 2005; Rezaie and Eidsvik, 2014), the objective is to construct a

predictive distribution of the unobserved state vector xt based on ξt−1, denoted xt|t−1. In the

skewed state-space model with Markov switching, the goal is to characterize the predictive

distribution of xt not only based on ξt−1, but also conditioned on the random variable st

taking on the value j and on st−1 taking on the value i:5

x
(i,j)
t|t−1 ∼ closed skew-normal

(
µ

(i,j)
t|t−1,Σ

(i,j)
t|t−1,Γ

(i,j)
t|t−1,ν

(i,j)
t|t−1,∆

(i,j)
t|t−1

)
, (12)

where

µ
(i,j)
t|t−1 = Fjµ

i
t−1|t−1 + µj,η, Σ

(i,j)
t|t−1 = FjΣ

i
t−1|t−1F

′
j +Σj,η,

Γ
(i,j)
t|t−1 =

Γi
t−1|t−1Σ

i
t−1|t−1F

′
j

(
Σ

(i,j)
t|t−1

)−1

Γj,ηΣj,η

(
Σ

(i,j)
t|t−1

)−1

 , ν
(i,j)
t|t−1 =

νi
t−1|t−1

νj,η

 ,

∆
(i,j)
t|t−1 =

 ∆11
t|t−1 ∆12

t|t−1(
∆12

t|t−1

)′
∆22

t|t−1

 ,

5Instead, I could have derived the distribution conditional on ξt−1, st = j, st−1 = i and st−2 = h
(h, i, j = 1, 2, . . . ,K) to obtain more accurate inferences. In this case, the superscripts (i, j) in equation (12)
would be changed to (h, i, j). However, when only st shows up in the state-space representation, conditioning
on (i, j) is usually enough.
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with

∆11
t|t−1 =∆i

t−1|t−1 + Γi
t−1|t−1Σ

i
t−1|t−1

(
Γi

t−1|t−1

)′
− Γi

t−1|t−1Σ
i
t−1|t−1F

′
j

(
Σi

t|t−1

)−1
FjΣ

i
t−1|t−1

(
Γi

t−1|t−1

)′
,

∆22
t|t−1 =∆j,η + Γj,ηΣj,ηΓ

′

j,η − Γj,ηΣj,η

(
Σ

(i,j)
t|t−1

)−1

Σj,ηΓ
′

j,η,

∆12
t|t−1 =− Γi

t−1|t−1Σ
i
t−1|t−1F

′
j

(
Σi

t|t−1

)−1
Σj,ηΓ

′

j,η.

Note that βi
t−1|t−1 is an inference on βt−1 based on information up to time t − 1, given

st−1 = i and β
(i,j)
t−1|t−1 is an inference on βt−1 based on information up to time t − 1, given

st = j and st−1 = i, with β ∈ {µ,Σ,Γ,ν,∆}. The prediction step calculates a battery of

K2 predictions for each date t, corresponding to every possible value for i and j. Associated

with these predictions, the updating steps become as follows:

x
(i,j)
t|t ∼ closed skew-normal

(
µ

(i,j)
t|t ,Σ

(i,j)
t|t ,Γ

(i,j)
t|t ,ν

(i,j)
t|t ,∆

(i,j)
t|t

)
, (13)

where

µ
(i,j)
t|t = µ

(i,j)
t|t−1 +Σ

(i,j)
t|t−1H

′

j(HjΣ
(i,j)
t|t−1H

′

j +Σj,ε)
−1(yt −Hjµ

(i,j)
t|t−1 − µj,ε),

Σ
(i,j)
t|t = Σ

(i,j)
t|t−1 −Σ

(i,j)
t|t−1H

′

j(HjΣ
(i,j)
t|t−1H

′
j +Σj,ε)

−1HjΣ
(i,j)
t|t−1,

Γ
(i,j)
t|t = Γ

(i,j)
t|t−1,

ν
(i,j)
t|t = ν

(i,j)
t|t−1 − Γ

(i,j)
t|t−1Σ

(i,j)
t|t−1H

′

j(HjΣ
(i,j)
t|t−1H

′

j +Σj,ε)
−1(yt −Hjµ

(i,j)
t|t−1 − µj,ε),

∆
(i,j)
t|t = ∆

(i,j)
t|t−1.

Similarly to the standard Kim (1994)’s filter, each iteration of the algorithm above pro-

duces an K-fold increase in the number of cases to consider. The key challenge is to collapse

the terms to reduce the (K ×K) posteriors
(
µ

(i,j)
t|t ,Σ

(i,j)
t|t ,Γ

(i,j)
t|t ,ν

(i,j)
t|t , and ∆

(i,j)
t|t

)
into K

posteriors
(
µj

t|t,Σ
j
t|t,Γ

j
t|t,ν

j
t|t, and ∆j

t|t

)
to make the above filter operable. Following Har-
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rison and Stevens (1976), Kim (1994) employs weighted averages of terms to collapse them.

However, such an approach is not viable for skewed state-space models due to unknown

properties of the closed skew-normal distribution. Drawing inspiration from Makov (1979)

and Makov and Smith (1980), I therefore employ an alternative approximating method:

µj
t|t = µ

(s̃t−1,j)
t|t , Σj

t|t = Σ
(s̃t−1,j)
t|t , Γj

t|t = Γ
(s̃t−1,j)
t|t , νj

t|t = ν
(s̃t−1,j)
t|t , and ∆j

t|t = ∆
(s̃t−1,j)
t|t ,

where s̃t−1 represents the most likely regime to be in place at time t − 1, according to the

filtered probability estimates. The approximating predictive distribution of xt|t is now only

conditioned on the variable st taking on the value j:

xj
t|t ∼ closed skew-normal

(
µj

t|t,Σ
j
t|t,Γ

j
t|t,ν

j
t|t,∆

j
t|t

)
,

which thus allows to evaluate equation (12) for the next period.

Another issue concerns the dimension of the skewness, which increases with each iteration

of the filter, as demonstrated by equations (12) and (13). Evaluating cumulative distribu-

tion functions of growing dimensions becomes rapidly impractical. Thus, it is necessary to

introduce some approximations to ensure the feasibility of the filter. Following Guljanov,

Mutschler, and Trede (2025), I reduce the dimensionality of skewness by omitting elements

in the cumulative distribution functions that do not dramatically distort the symmetry. For

further details, the interested reader is referred to this paper.

3.3 Estimation

The key step in evaluating the overall likelihood function p(yT ,yT−1, . . . |ξ0) is to obtain the

conditional likelihood function at time t:

p(yt|ξt−1) =
K∑
j=1

K∑
i=1

p(yt|st−1 = i, st = j, ξt−1)p (st−1 = i, st = j|ξt−1) , (14)
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where p(yt|st−1 = i, st = j, ξt−1) is the conditional likelihood function, based on informa-

tion up to time t − 1, given st−1 = i and st = j, and is obtained on the prediction error

decomposition:

yt|st−1 = i, st = j, ξt−1 ∼ closed skew-normal
(
ỹ
(i,j)
t|t−1,Ω

(i,j)
t|t−1,SK

(i,j)
t−1 ,ν

(i,j)
t|t−1,Ξ

(i,j)
t|t−1

)
,

with ỹ
(i,j)
t|t−1 = Hjµ

(i,j)
t|t−1+µj,ε is the conditional forecast based on information up to time t−1,

given st−1 = i and st = j, Ω
(i,j)
t|t−1 = HjΣ

(i,j)
t|t−1H

′
j + Σj,ε is the conditional scale of forecast

error; SK
(i,j)
t−1 = Γ

(i,j)
t|t−1GK

(i,j)
t−1 is the skewed Kalman gain based on information up to time

t − 1, given st−1 = i and st = j and where GK
(i,j)
t−1 = Σ

(i,j)
t|t−1H

′
j

(
HjΣ

(i,j)
t|t−1H

′
j +Σj,ε

)−1

is the Gaussian Kalman gain up to time t − 1, given st−1 = i and st = j; and Ξ
(i,j)
t|t−1 =

∆
(i,j)
t|t−1 +

(
Γ

(i,j)
t|t−1 − SK

(i,j)
t−1Hj

)
Σ

(i,j)
t|t−1

(
Γ

(i,j)
t|t−1

)′
.

The filtering and estimation procedure is completed by making inference on the proba-

bility terms. The arguments below follow Hamilton (1989), Kim (1994) and Kim and Nelson

(1999) as probability terms remain unchanged in the context of skewed state-space models

with regime switching. At the beginning of time t, given the probability of being in regime

i, p(st−1 = i|ξt−1), one can calculate:

p(st−1 = i, st = j|ξt−1) = pi,jp(st−1 = i|ξt−1), for i, j = 1, . . . , K,

where pi,j is the transition probability defined in equation (11). The probability terms can

then be updated using information up to time t:

p(st−1 = i, st = j|ξt) =
p(yt|st−1 = i, st = j, ξt−1)p (st−1 = i, st = j|ξt−1)

p(yt|ξt−1)
.

The remaining probability term can then be calculated as:

p(st = j|ξt) =
K∑
i=1

p(st−1 = i, st = j|ξt).
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Using equation (14), the overall likelihood function (in log units) is then given by:

p(yT ,yT−1, . . . |ξ0) =
T∑
t=1

ln {p(yt|ξt−1)} . (15)

In case of Bayesian inference, the overall log-likelihood function in (15) is simply combined

with the prior density functions to obtain the posterior density.

To estimate the parameters of the model, a nonlinear optimization procedure such as the

CSMINWEL program, developed by Christopher A. Sims, can be employed. This procedure

aims to maximize the approximate log-likelihood function or the posterior mode (in Bayesian

inference) with respect to the unknown parameters of the model. Depending on the dimen-

sionality of the model, complementary methods may be necessary, such as the blockwise

optimization method developed by Sims, Waggoner, and Zha (2008). In this approach, a

class of richly parameterized multivariate Markov-switching models breaks down parameters

into several subblocks. Standard nonlinear optimization routines are then applied to each

block, while keeping the other subblocks constant, to maximize the objective function.

If Bayesian inference is employed, after obtaining the posterior mode, a Markov Chain

Monte Carlo (MCMC) method is necessary to generate draws from the posterior distribution

of the DFM with Markov-switching. A straightforward approach is to use a random walk

Metropolis-Hasting (RWMH) algorithm.

In the online Appendix, I report the results of simulation exercises on synthetic data to

illustrate my method and assess its efficacy.

4 An Empirical Application

I now present a simple application involving a set of macroeconomic aggregates. I describe

in turn the data, the specific variant of the model that I implement, and the adjustments to

incorporate the Covid-19 period.
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4.1 Data description

Four macroeconomic time series are employed in this paper, which are extracted from the

Federal Reserve Economic Data (FRED) covering the period 1959.Q1 to 2024.Q4 (N =

4). These variables include: (1) real GDP growth, (2) real personal income less transfer

payments, (3) real Manufacturing and trade sales, and (4) total employment (in thousands

of persons). Sources and details are reported in the online Appendix.

Data are expressed as one hundred times the first difference of the logarithm of each

variable. Data are then standardized by subtracting the sample mean from each variable and

dividing by its standard deviation. The resulting series are denoted yi,t, with i = [1, . . . , 4].

4.2 Model Implementation

In the development so far I have allowed for general AR(p) and kh-regime dynamics. In the

empirical model that I now take to the data, I make a simplifying assumption that reduces

the number of parameters to be estimated. Specifically, I adopt γi(L) = γi, for i = 1, . . . , 4,

and specify first-order AR specifications for both the common component and the four

idiosyncratic components in equations (2) and (4): ϕ(L) = (1−ϕ1L) and ψi(L) = (1−ψiL),

where i = 1, . . . , 4. Concerning Markov processes, I assume that k = 2, meaning that each

process, sht , is governed by a two-states Markov process. This results in a total of K = 8

(= k3) regimes.

Finally, I adopt an identifying assumption since the macroeconomic factor is not identi-

fied. In particular, the factor loading γ1 is normalized to a value of one. This corresponds

to the named factor normalization in the DFM literature (e.g., Stock and Watson, 2016).6

Alternatively, the scale parameter of the first regime, σ1,ϑ could be normalized to a value of

one to identify the scale of the index nt.

6The identification issue was initially raised in the context of Gaussian errors. In the online Appendix,
I show that this issue is similar in a closed skew-normal environment.
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4.3 Covid-19 period

The dataset includes the Covid-19 period, which saw unprecedented levels of volatility in

many macroeconomic aggregates. Time series models that do not account for such extreme

fluctuations may yield biased or inefficient parameter estimates. There are, at least, three

potential approaches to address this issue within my framework.

First, I could introduce a third regime for the variable governing the scale parameter

sscalet to capture the Covid-19 period as an extreme-volatility regime. However, this would

increase the total number of regimes to estimate (K = 12), resulting in the computation

of 144 (= 12× 12) posteriors
(
µ

(i,j)
t|t ,Σ

(i,j)
t|t ,Γ

(i,j)
t|t ,ν

(i,j)
t|t , and ∆

(i,j)
t|t

)
in the prediction step

defined by equation (12). This approach may become computationally prohibitive due to

the large number of evaluations required at each iteration of the filter.

Second, Carriero, Clark, Marcellino, and Mertens (2022) suggest augmenting a standard

stochastic volatility model with i.i.d. outliers to accommodate more extreme observations.

However, integrating this method into my framework would necessitate a complete revision

of the basic filtering procedure outlined in this paper, which exceeds the current scope.

Third, Lenza and Primiceri (2022) propose a method to explicitly model changes in

shock volatility by adding scaling factors at the time of volatility change. This approach

offers computational simplicity since it leverages precise knowledge of the timing of increased

variance in macroeconomic innovations due to the Covid-19. Consequently, I adopt this

method in my analysis. Specifically, I modify the distributions of disturbance terms ςit and

ϑt in equations (3) and (5), respectively, as follows:

ςit ∼ normal
(
0, c2tσ

2
i,ς

)
, and ϑt ∼ closed skew-normal

(
µslocationt ,ϑ, c

2
tσ

2
sscalet ,ϑ, αsshapet ,ϑ0, 1

)
,

where ct is equal to 1 before the time period in which the epidemic begins, which I denote by

t∗ =2020.Q2. I then assume that ct∗ = c0, ct∗+1 = c1, ct∗+2 = c2, and ct∗+j = 1+(c2−1)ρj−2,

with [c0, c1, c2, ρ] is a vector of unknown coefficients to be estimated. By doing so, I simply
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re-scale the scale parameter during the second quarter of 2020 by an unknown parameter c0,

and do the same for the third and fourth quarter of 2020 with two other parameters c1 and

c2. Thereafter, I assume that the scaling factor decays at a rate ρ. Finally, note also that

this re-scaling is common to all shocks of the model.

5 Empirical Results

This section presents the results of the model estimation using Bayesian methods. I begin by

describing the prior distributions chosen for the model parameters, including the rationale

behind their specification. This is followed by a presentation of the empirical results, with a

focus on the posterior distributions of the parameters, estimated using a standard RWMH

algorithm.

5.1 Prior

The priors are defined on the left-hand side of Table 1. A few of them deserve further discus-

sion. Regarding the parameters governing the measurement equation, γi for i = {2, . . . , 4},

I choose a normal prior with a mean of 1.00 and a standard deviation of 1.00. The prior for

the autoregressive parameters ϕ1 and ψi also follow the same family of distribution with a

mean of 0.00 and a standard deviation of 1.00.

Regarding the prior for the scale parameters σi,ς and σsscalet ,ϑ, I opt for an inverted-gamma

distribution with a mean of 0.50 and a standard deviation of 1.00. This choice ensures a

wide prior distribution covering a broad parameter space.

The prior for the shape parameter αsshapet ,ϑ has a normal density with a mean of 0.00 and

a standard deviation of 3.00. The prior for the location parameter µslocationt ,ϑ also follows a

normal distribution with a mean of 0.00 and a standard deviation of 2.00, It may be worth

noting that I impose the same prior across all regimes, ensuring that any differences in

estimated parameters between regimes are primarily driven by the data (i.e., the likelihood)
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rather than the priors.

The prior on the transition matrices, phi,i for i = {1, 2} and h ∈ {location, scale, shape},

follows a beta distribution, with a mean of 0.85 and a standard deviation of 0.15, implying

a prior duration of six quarters.

Finally, regarding the parameters related to the Covid-19 period, I follow Lenza and

Primiceri (2022) and choose a Pareto distribution for the prior on parameters c0, c1, and

c2, with scale and shape parameters both equal to one, so that I can cover a wide range of

values. The prior for decay parameter ρ has a beta distribution with a mean of 0.50 and a

standard deviation of 0.20.

5.2 Posterior estimates

Estimates presented here are based on samples of 1,000 retained draws, obtained by sampling

a total of 11,000 draws, discarding the first 1,000, and retaining every 10th draw of the post-

burn sample.

On the right-hand side of Table 1, I report the posterior mode, median, and the 90

percent probability interval for each parameter of the estimated model. A key takeaway

is the substantial heterogeneity in parameter estimates across regimes. For example, the

median of the location parameter in the first regime is approximately 0.09, whereas it turns

negative (–0.24) in the second regime. Regarding scale, the second regime exhibits a value

more than three times higher than that of the first regime. The shape parameter is also

regime-dependent: it is positive in the first regime (α1,ϑ = 8.30) and negative in the second

(α2,ϑ = −5.38). Notably, the 90 percent probability intervals for regime-specific parameters

do not overlap, suggesting that these parameters are both well identified and distinct across

regimes.

Regarding the posterior probabilities of the transition matrix P location that governs time

variation in the location parameter, there is a difference in persistence across regimes. The

posterior median for plocation1,1 is 0.94 and that for plocation2,2 is 0.97, indicating that the persistence
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Table 1: Prior and Posterior Distributions.

Prior Posterior
Coefficient Density Para(1) Para(2) Mode Median [5; 95]
γ2 N 1.00 1.00 0.9435 0.9323 0.8350 1.0505
γ3 N 1.00 1.00 1.1029 1.1041 0.9966 1.2193
γ4 N 1.00 1.00 0.6122 0.5899 0.5248 0.6451
ϕ1 N 0.00 1.00 0.2899 0.2926 0.1583 0.4736
ψ1 N 0.00 1.00 −0.2077 −0.2221 −0.3390 −0.1068
ψ2 N 0.00 1.00 −0.1124 −0.1219 −0.2234 −0.0041
ψ3 N 0.00 1.00 0.0395 0.0318 −0.0695 0.1473
ψ4 N 0.00 1.00 0.8343 0.8243 0.7631 0.8807
σ1,ς I-G 0.50 1.00 0.4514 0.4458 0.4055 0.4864
σ2,ς I-G 0.50 1.00 0.5966 0.5991 0.5684 0.6374
σ3,ς I-G 0.50 1.00 0.2327 0.3142 0.1653 0.7943
σ4,ς I-G 0.50 1.00 0.1311 0.1406 0.1196 0.1684
σsscale=1,ϑ I-G 0.50 1.00 0.3170 0.3135 0.2772 0.3601
σsscale=2,ϑ I-G 0.50 1.00 0.8331 0.8382 0.6926 1.0108
αsshape=1,ϑ N 0.00 3.00 8.3887 8.2995 5.4104 11.3418
αsshape=2,ϑ N 0.00 3.00 −5.3586 −5.3812 −9.0036 −3.2800
µslocation=1,ϑ N 0.00 2.00 0.1490 0.0933 −0.0582 0.2636
µslocation=2,ϑ N 0.00 2.00 −0.2279 −0.2399 −0.3468 −0.1518
plocation1,1 B 0.85 0.15 0.9659 0.9392 0.8453 0.9889
plocation2,2 B 0.85 0.15 0.9893 0.9657 0.8975 0.9942
pscale1,1 B 0.85 0.15 0.9843 0.9719 0.9497 0.9913
pscale2,2 B 0.85 0.15 0.9675 0.9480 0.8893 0.9851

pshape1,1 B 0.85 0.15 0.9315 0.9249 0.8734 0.9590

pshape2,2 B 0.85 0.15 0.7897 0.7795 0.6471 0.8755
c0 P 1.00 1.00 22.2550 25.1975 14.9736 42.3350
c1 P 1.00 1.00 17.2700 12.1338 4.9464 25.7297
c2 P 1.00 1.00 2.6529 2.2683 1.3312 4.6138
ρ B 0.60 0.20 0.6126 0.5928 0.2609 0.7841

Note: N stands for Normal, B for Beta, I-G for Inverse-Gamma, and P for Pareto distribu-
tions. Para(1) and Para(2) correspond to the means and standard deviations for the N, B, and
I-G distributions, and to the scale and shape parameters for P distributions. The 5 percent
and 95 percent demarcate the bounds of the 90 percent probability interval. For identification
issue, γ1 is set to 1.

of both regimes is roughly similar (with an average duration of 25 quarters) than the second

regime (with an average duration of 33 quarters). A similar pattern is observed for the

transition matrix P scale, where the posterior durations of both regimes are almost identical.
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Finally, the transition matrix P shape reveals an average duration of 5 to 10 quarters for each

regime, implying recurrent Markov changes between downside and upside risks in the U.S

economy.

Turning to the parameters associated with the Covid-19 episode, the estimates for the

scaling coefficients c0, c1, and c2 are well identified, as evidenced by relatively narrow poste-

rior intervals. This indicates that the data are highly informative about these parameters.

The estimated value for the rate of decay, ρ, is centered just below 0.60, meaning that

Covid-related volatility has been diminishing by 40% each quarter since the fourth quarter

of 2020.

Figure 1 reports the regime probabilities, evaluated at the mode, for each Markov process.

Probabilities are smoothed in the sense of Kim (1994); i.e., full sample information is used

in getting the regime probabilities at each date. One can see from the figure that the U.S

economy has been characterized by numerous switches between regimes over time. Looking

at the process governing the location parameter (Panel A), the negative-location regime

(Regime 2) coincides remarkably well with the 1970s-1980s period, marked by the repeated

energy crises that drove up oil costs and weakened U.S growth. This regime has also prevailed

since the beginning of 2000s, a period characterized by the slowdown in long-run growth, as

typically reported in the literature (e.g., Antolin-Diaz, Drechsel, and Petrella, 2017).

Regarding the process governing the scale parameter (Panel B), the figure indicates that

the high-scale regime (Regime 2) predominantly prevailed during the pre–Great Moderation

period and the 2007-2009 Great Recession. This finding corroborates the works of Sims

and Zha (2006), Justiniano and Primiceri (2008), Bianchi (2013), Bianchi and Melosi (2017)

and Lhuissier and Tripier (2021), who estimate dynamic time-series models for the U.S

economy with volatility changes. After the Great Recession, the high-volatility regime was

not anymore evident. It may worth remembering that additional scaling parameters (c0,

c1, c2, and ρ) were introduced for the Covid-19 period, and this explains why the Markov-

switching process does not capture any regime shifts during that period.
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Figure 1: Regime Probabilities
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Note: Sample period: 1959.Q2 — 2024.Q4. Evolution of regime probabilities (at the mode) produced
from the Markov-switching DFM specification specified by equations (1)-(6). Panels A, B, and C report
the probabilities of being in Regime 2 for the three Markov-switching process, slocation, sscale, and sshape,
respectively. Probabilities are smoothed in the sense of Kim (1994); i.e., full sample information is used in
getting the regime probabilities at each date.

Finally, regarding the process governing the shape parameter, Panel C suggests that

the U.S economy has experienced numerous switches between negative- and positive-shape

regimes over time. Importantly, the negative-shape regime (Regime 2) consistently coincides

with recessions, including the 1960–1961 recession, the 1969-1970 recession, the 1973–1975

recession, the recessions of the early 1980s, the early 1990s, and the early 2000s, as well as

the Great Recession and the COVID-19 crisis. Although the shape parameter is not the only

source of potential asymmetry in the distribution (due to the mixture of distributions), it

appears that downside risks are dominant during the episodes of recession. The analysis of

the next section will corroborate this finding. Overall, the results clearly show that location,

scale, and shape parameters do switch over time, but not in a synchronized manner. This

20



finding supports the specification of independent Markov-switching processes used in the

baseline model.

In order to see whether the results are robust to the choice of the sample period, the model

is reestimated excluding the last episode of recession (that is, the Covid period beginning

in 2020.Q1). Most of the parameter estimates are similar to the ones reported in Table 1.

A modest exception is the estimate of ϕ1, which is somewhat higher when the post-Covid

period is excluded. The plot of the full-sample smoother, using the whole sample, based on

the subsample estimates resembles Figure 1. The results are available in the online Appendix.

6 Macroeconomic Skewness Assessment

The previous results demonstrated that all parameters governing the conditional distribu-

tion of the macroeconomic factor nt are time-varying. However, they do not allow for a

direct inspection of higher-order moments of the distribution due to the complex nature of

the Markov mixture distribution (e.g., Timmermann, 2000; Perez-Quiros and Timmermann,

2001; Bianchi, 2016). For completeness, and in order to provide an accurate characterization

of asymmetric macroeconomic risks in the U.S economy, I study in Section 6.1 the evolu-

tion of conditional skewness of the macroeconomic factor. In Section 6.2, I compare it with

alternative skewness measures drawn from the literature.

6.1 Time variation in macroeconomic skewness

Deriving the conditional moments of a Markov-switching model is not straightforward. Tim-

mermann (2000) characterizes the moments of the basic Markov switching univariate model

for cases where the error term follows a t-distribution or a normal distribution. Lhuissier

(2022) extends the approach for the case where the error term is a skew-normal distribu-

tion. The author shows that the skewness can manifest through two aspects: 1) the degree of

asymmetry of the distribution which is governed by the shape parameter; and 2) the mixture
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feature of distributions.7 I complement the approach of Lhuissier (2022) for the case where

the error term follows a closed skew-normal distribution, so that I can derive analytically the

third moment of the macroeconomic factor, nt. Technical details are reported in the online

Appendix.

Figure 2 presents the time-varying skewness of the unobserved factor, produced from the

Markov-switching skewed DFM specified by equations (1) to (6).8 There is strong evidence of

time variation in macroeconomic skewness, which exhibits large swings between positive and

negative values throughout the sample. The coefficient of skewness appears clearly to follow

a procyclical pattern, which rises during expansions and falls during downturns. Moreover,

the skewness tends to decrease prior to the onset of recessions — a feature that corroborates

the findings of Delle Monache, De Polis, and Petrella (2024) and that is also observable for

the euro area (e.g., Lhuissier, 2022), both of which rely on GDP growth skewness.

In addition to the macroeconomic skewness measure derived from the third central mo-

ment reported above, I also compute alternative, quantile-based macroeconomic skewness

measures to assess distributional asymmetry without relying on moment assumptions. These

non-parametric measures provide robustness to outliers and heavy tails and serve as a useful

cross-check. The findings, available in the online Appendix, confirm the procyclicality of

macroeconomic skewness.

6.2 Comparison with other skewness measures

The results reported in the previous section document strong evidence of time-variation in

macroeconomic skewness using a set of four macroeconomic time series. In this subsection

I compare it with alternative measures of skewness. Three measures are considered. The

first is based on univariate version of the model with GDP growth as measure of economic

activity. Since there is no latent factor to extract in this single-variable case, the model

7Clark (1973) shows that time-independent mixtures of normal distributions can generate skewness and
kurtosis beyond that of a single Gaussian distribution.

8The first four moments of the distribution of the macroeconomic factor are presented in the online
Appendix.
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Figure 2: Macroeconomic Skewness
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Note: Sample period: 1959.Q2 — 2024.Q4. Evolution of macroeconomic skewness produced from the
Markov-switching DFM specification specified by equations (1)-(6). The median is reported in black solid
line and the 68% and 90% error bands in blue areas. The yellow areas denote the NBER-dated recessions.

effectively reduces to an univariate regime-switching skew-normal model. Lhuissier (2022)

develops such a model to characterize business cycle variation in the probability distribution

of GDP growth in the euro area. Specifically, he focuses on a non-Gaussian model using

the skew-normal distribution developed by Azzalini (1985, 1986), where location, scale and

shape parameters are allowed to vary over time according to independent two-state Markov-

switching processes. Consequently, the Lhuissier (2022)’s univariate Markov-switching model

can be seen as a special case of my framework. I apply this methodology to U.S real GDP

growth. The data sample starts in the second quarter of 1959 and ends in the fourth quarter

of 2019 to avoid the Covid-19 period.
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The second measure relies on the methodology developed by Adrian, Boyarchenko, and

Giannone (2019). The authors employ a two-step method to estimate flexible parametric

predictive distributions of U.S real GDP growth from 1973.Q1 to 2015.Q4. In the first step,

distributions are semi-parametrically estimated using quantile regressions that include past

economic and financial conditions. In the second step, estimated quantile distributions are

smoothed by interpolating between estimated quantiles using flexible skewed t-distributions.

This approach converts empirical quantile distributions into estimated conditional distribu-

tions of GDP growth. Moments are then easily retrievable. I replicate the measure and

extend it through the end of 2019.

The third measure is drawn from Iseringhausen, Petrella, and Theodoridis (forthcoming).

The authors consider a broad range of macroeconomic aggregates to measure macroeconomic

skewness. They employ a two-step estimation method, in which series-specific Kelley (1947)

skewness measures are estimated by employing autoregressive quantile regressions, prior

to extracting their first principal component, which in turn measures the macroeconomic

skewness. I obtain the measure until the fourth quarter of 2023 from the authors’ website.

Figure 3 plots alternative measures of skewness, along with my estimated macroeconomic

skewness measure. Although my measure is positively correlated with the GDP growth

skewness, with a correlation coefficient around 0.38, some disparities exist (Panel a). For

instance, during the 2001 recession and the Great Recession, my measure exhibits large

and persistent declines, accurately capturing heightened downside risks to macroeconomic

outcomes. In contrast, the GDP growth skewness declines only marginally during these

episodes and remains only slightly negative. An other important episode where the two

measures disagree includes the recent years, where my measure of macroeconomic skewness

was low and negative but the GDP growth measure of skewness was comparatively high and

positive.

The contrast is also observed with the skewness measure constructed using quantile re-

gressions that include financial conditions (Panel b). It actually suggests frequently and
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Figure 3: Macroeconomic Skewness versus Alternative Skewness Measures
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(b) Adrian, Boyarchenko, and Giannone (2019)’s GDP growth skewness
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(c) Iseringhausen, Petrella, and Theodoridis (forthcoming)’s macroeconomic skewness
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Note: The top-hand panel (Panel a) shows the evolution of a skewness measure based exclusively on GDP
growth using the methodology developed by Lhuissier (2022). The middle-hand panel (Panel b) shows the
evolution of a skewness measure based on the methodology developed by Adrian, Boyarchenko, and Giannone
(2019). The bottom-hand panel (Panel c) shows the evolution of a macroeconomic skewness measure based
on the methodology developed by Iseringhausen, Petrella, and Theodoridis (forthcoming). For all panels,
the black solid line reports the evolution of the macroeconomic skewness, while the blue dotted line displays
that of alternative skewness measures. The yellow areas denote the NBER-dated recessions.

relatively low and negative levels of skewness since the end of the Great Recession in 2009,

when the macroeconomic skewness is mostly positive. Another important discrepancy arises

in the 1990s, where the skewness of GDP growth which conditions on financial conditions

was null. Again, this contrasts with macroeconomic skewness which is at a record high dur-

ing this period. That being said, both series share some similarities — namely that, they
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both fall into negative territory during recessions. This suggests that the heightened asym-

metry during these episodes of economic tumult is not necessarily driven by a tightening of

financial conditions, and thus corroborates the findings of Plagborg-Møller, Reichlin, Ricco,

and Hasenzagl (2020).

A further comparison is drawn with the measure developed by Iseringhausen, Petrella,

and Theodoridis (forthcoming), which yields a correlation of approximately 0.50 with my

measure of macroeconomic skewness (Panel C). Although the two measures are positively

related, my measure is notably more volatile, and episodes of positive skewness occur far more

frequently (Panel c). Despite this difference in volatility, both measures point to the same

qualitative conclusion: macroeconomic skewness is procyclical, tending to fall into negative

territory during recessions. The higher volatility of my measure can be attributed to its

construction based on the third central moment, which is highly sensitive to extreme values.

In contrast, the measure used by Iseringhausen, Petrella, and Theodoridis (forthcoming) is

based on the Kelley skewness, a quantile-based approach that is more robust to outliers and

yields smoother dynamics. As discussed above, when I derive the Kelley skewness from my

model, the resulting measure is substantially less volatile and closely tracks the dynamics

reported in their study.

7 Out-of-Sample Forecasting

In this section, I evaluate the out-of-sample performance of the proposed model in assessing

risks to growth. Specifically, I examine whether incorporating a broad set of macroeconomic

indicators through my framework yields improvements in predictive accuracy relative to

univariate benchmark models.

To assess the information content of the baseline model — referred to as MS-SDFM

(Markov-switching Skewed Dynamic Factor Model) — I compare its predictive distribu-

tions against two benchmark approaches: 1) A univariate version of the model, which relies
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solely on real GDP growth as a summary measure of economic activity (referred to as MS-

Univariate); 2) The quantile regression approach of Adrian, Boyarchenko, and Giannone

(2019), which models the conditional distribution of GDP growth as a function of lagged

macroeconomic and financial indicators (referred to as ABG (2019)).

The out-of-sample procedure is implemented in a pseudo-real-time fashion since it re-

lies on final revised data. The forecasting strategy follows a standard recursive approach.

Specifically, I begin with an initial estimation sample spanning 1959:Q2 to 1991.Q4, from

which I generate predictive distributions for 1992:Q1 (one quarter ahead) and 1992:Q4 (one

year ahead). I then expand the estimation window by one quarter at a time, recursively

repeating the estimation and forecasting steps until the end of the sample in 2019.Q4.9 At

each iteration, the estimation follows the methodology detailed in Section 3. Details about

the forecasting procedure are available in the online Appendix.

7.1 Downside Risk Assessment

I begin by examining the lower tail of the GDP growth distribution to assess downside risks.

As a summary metric, I use the GaR at the 5th percentile, which corresponds to the value

below which future GDP growth is expected to fall with 5% probability. This measure

is directly obtained from the estimated conditional predictive distributions and provides a

clear, interpretable signal of macroeconomic risk.10

The left panel of Figure 4 plots the 5th percentile GaR estimates across the three models.

The baseline model (MS-SDFM) captures key episodes of rising downside risk ahead of U.S.

recessions, although only partially. For instance, the MS-SDFMmodel signals a deterioration

in growth prospects ahead of the 2001 recession: the GaR declines to around -0.5% in 2000.Q4

— just before the official onset of the recession — and reaches a trough of approximately

-1.0% in early 2001. A similar pattern is observed during the Great Recession: the GaR falls

9I do not include the Covid-19 period because the Lenza and Primiceri (2022)’s methodology is not
suitable for out-of-sample exercises.

10As a complement, I also compute the expected shortfall, which gives the expected value of GDP growth
conditional on it being in the worst 5% of outcomes; results are reported in the Appendix.
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Figure 4: Downside Risk Assessment.
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Note: Sample period: 1992.Q1 — 2019.Q4. Evolution of the 5% GaR and the probability of recession at the
one-quarter ahead horizon for the three models: MS-SDFM, MS-Univariate, and ABG (2019). The yellow
areas denote the NBER-dated recessions.

to -0.5% ahead of the 2008 recession and declines further to about -3.0% at the peak of the

downturn.

The MS-SDFM’s GaR estimates exhibit distinct dynamics compared to the univariate

benchmarks. In the case of the 2001 recession, the ABG (2019) model fails to signal rising

downside risks — the GaR remains essentially flat throughout the period. This is likely due

to the model’s dependence on financial conditions, which changed little in the lead-up to

that recession, resulting in minimal variation in its conditional distribution of GDP growth.

In contrast, the Markov-switching univariate model shows a moderate decline in GaR ahead

of the 2001 recession, somewhat echoing the MS-SDFM pattern, though the deterioration

is notably less pronounced. During the Great Recession, the ABG (2019) model performs

more closely to the MS-SDFM, with both models capturing the sharp decline in GaR as

financial conditions deteriorate rapidly. Overall, these results highlight the added value of

the MS-SDFM in tracking evolving downside risks — whether or not financial conditions are

the main source of economic stress.
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Inference about downside risks can also be made by examining the probability of a re-

cession, defined here as the probability of negative GDP growth in the following quarter.

These probabilities are shown in the right panel of Figure 4. The MS-SDFM model captures

increases in recession risk ahead of economic downturns, although the rise is often modest

and does not always signal an imminent recession with high confidence. Nonetheless, the

model produces reasonably aligned peaks with NBER-defined recession dates. For example,

the probability of recession rises to approximately 50% during the 2001 recession and ex-

ceeds 90% during the Great Recession. Importantly, the estimated probabilities drop sharply

shortly after each recession ends, reflecting timely updates in the GDP growth conditional

distribution.

Compared to the univariate benchmarks, the MS-SDFM provides a more informative

and responsive assessment of recession risk. During the 2001 recession, the ABG (2019)

model’s estimated probability remains flat, reflecting its dependence on financial conditions

— which, as discussed earlier, did not deteriorate significantly during that episode. The MS-

univariate model does respond somewhat, but its recession probability peaks at just 20%,

far below that of the MS-SDFM. During the Great Recession, both univariate models again

lag behind: neither generates recession probabilities that match the magnitude or timing of

those produced by the MS-SDFM. These results underscore the advantage of incorporating a

broad set of macroeconomic signals, as done in the MS-SDFM, for tracking shifts in recession

risk.

7.2 Forecast Accuracy

In this section, I perform a more formal evaluation of out-of-sample predictions. I rely on

three types of analysis. First, I evaluate the accuracy of the density forecasts. Density

forecasts accuracy is evaluated via the predictive log-score. To compute the score with the

baseline model (MS-SDFM), I use a kernel-smoothed estimate of the density of the draws

from the predictive distribution based on linear diffusion processes as in Botev, Grotowski,
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and Kroese (2010). Second, I consider the quantile score, also known as the tick loss function

(e.g., Giacomini and Komunjer, 2005), to evaluate the lower tail quantile estimate, at the

5 percent quantile. This metric allows me to provide an assessment of tail risk predictions.

Third, I provide an analysis of the calibration of the predictive distribution by looking at

the properties of the probability integral transforms (PITs).

Table 2 reports the out-of-sample average log predictive scores and quantile scores for both

one-quarter-ahead and one-year-ahead forecasts. To facilitate interpretation, all results for

the baseline model (MS-SDFM) are presented relative to those of the univariate benchmark

models. Specifically, log score differentials are computed as the difference between the MS-

SDFM and the benchmark models, such that positive values indicate superior predictive

accuracy of the MS-SDFM. Quantile scores, by contrast, are reported as ratios, with values

below 1 indicating better performance of the MS-SDFM relative to the benchmarks. The

p-values from the Diebold and Mariano (1995)-West (1996) tests are shown in parentheses,

and values significant at the 10% level are highlighted in bold.

Across the full sample, the MS-SDFM shows modest improvements over the MS-Univariate

model (Panel A), with positive log score differentials and quantile score ratios below 1 at

both horizons, although these differences are not statistically significant. Relative to ABG

(2019) (Panel B), the MS-SDFM performs similarly on average, with small and statistically

insignificant differences in both metrics.

The model’s strength becomes more evident during recessions. The MS-SDFM signifi-

cantly outperforms both benchmark models in recession periods, especially in terms of log

scores. Against the MS-Univariate benchmark, log score gains are large and statistically sig-

nificant at both horizons, with improvements of 0.91 and 0.76 (p-values < 0.05). The quantile

score ratios during recessions also indicate sharper accuracy in capturing tail risks, both for

the one-quarter-ahead forecast (ratio = 0.42, p = 0.0999) and the four-quarter-ahead forecast

(ratio = 0.59, p = 0.0161). When compared to ABG (2019), the MS-SDFM again displays

notable improvements in log scores during recessions, especially at the short-term horizon
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Table 2: Out-of-Sample Forecasting Performance Relative to Univariate Benchmarks.

Panel A. MS-Univariate Model
One-quarter ahead Four-quarter ahead

Log-Score Quantile Score (τ = 0.05) Log-Score Quantile Score (τ = 0.05)
Full sample 0.0248 0.7908 0.0286 0.7649

(0.7184) (0.1565) (0.7066) (0.2057)
Recessions 0.9055 0.4204 0.7580 0.5945

(0.0325) (0.0999) (0.0054) (0.0161)

Panel B. Adrian, Boyarchenko, and Giannone (2019)’s model
One-quarter ahead Four-quarter ahead

Log-Score Quantile Score (τ = 0.05) Log-Score Quantile Score (τ = 0.05)
Full sample −0.0091 0.8973 −0.0107 1.0833

(0.9008) (0.4180) (0.8852) (0.4341)
Recessions 0.7694 0.5094 0.4733 0.9128

(0.0618) (0.0621) (0.0809) (0.5430)

Note: To facilitate interpretation, all results for the baseline model (MS-SDFM) are presented relative to
those of the univariate benchmark models (Panel A: MS-Univariate model; Panel B: ABG (2019)). Specif-
ically, log score differentials are computed as the difference between the MS-SDFM and the benchmark
models, such that positive values indicate superior predictive accuracy of the MS-SDFM. Quantile scores,
by contrast, are reported as ratios, with values below 1 indicating better performance of the MS-SDFM rel-
ative to the benchmarks. The p-values from the Diebold and Mariano (1995)-West (1996) tests are shown
in parentheses, and values significant at the 10% level are highlighted in bold.

(0.77, p = 0.0618). Quantile score ratios also suggest better downside risk capture, although

the four-quarter-ahead improvement is less pronounced and not statistically significant.

Overall, these results underscore the MS-SDFM’s superior ability to forecast adverse eco-

nomic conditions, particularly around turning points, and highlight the value of its broader

information set.

Figure 5 presents the empirical cumulative distribution functions (CDFs) of the PITs for

the three models under consideration. Under correct density calibration, the PITs should

follow a uniform distribution, implying that the empirical CDF should closely align with the

45-degree line. To formally assess calibration, I construct confidence bands around the 45-

degree line using the methodology of Rossi and Sekhposyan (2019), which allows for visual

inference about significant deviations from uniformity.

The results indicate that the MS-SDFM exhibits strong calibration. Its empirical PIT
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distributions lie entirely within the confidence bands and remain close to the 45-degree

line across most of all quantiles and both forecast horizons. The MS-Univariate model

also demonstrates good calibration, with PITs tracking the uniform distribution reasonably

well. Notably, for the four-quarter-ahead forecasts, it appears slightly better aligned with

the 45-degree line at higher quantiles compared to the MS-SDFM. In contrast, the ABG

(2019) model shows signs of miscalibration. At the one-quarter-ahead horizon, its PIT

CDF deviates from the 45-degree line at certain quantiles, falling outside the confidence

bands. These discrepancies become more pronounced at the four-quarter-ahead horizon,

where significant deviations are observed across a broader range of quantiles. Overall, these

results highlight the MS-SDFM’s good calibration performance, particularly in comparison

to the ABG (2019) model.

Figure 5: Probability Integral Transforms (PITs) — Real GDP Growth.
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(b) Four-quarter ahead
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Note: Calibration of the predictive distribution by means of the probability integral transforms (PITs). The
closer the empirical cumulative distribution of the PITs is to the 45 degrees line, the better the model is
calibrated. Critical values are obtained as in Rossi and Sekhposyan (2019) to account for sample uncertainty.
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8 Conclusion

In this paper, I introduced a novel framework to assess broad-based, asymmetric macroe-

conomic risk. By moving beyond GDP growth alone and capturing the joint dynamics of

multiple indicators, the proposed model provides a richer view of the balance of risks in the

economy. Macroeconomic skewness reveals meaningful cyclical variation and improves the

detection of downside risks, particularly around recessions. Forecast evaluations confirm that

incorporating a broader information set enhances predictive accuracy, especially in recession

periods.

This work can be expanded in several directions. First, a natural extension would be to

relax the assumption of exogenous regime switching. This would allow to better understand

the causes of shifts in macroeconomic skewness. Second, the provided methodology offers

potentially a feasible and reliable way to model and estimate time variation in the skewness of

structural shocks within DSGE models. These extensions would open up interesting avenues

for further research and could be applied to a variety of economic issues.
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A Simulation Study

In this section, I conduct a number of simulation studies to assess the performance of the

proposed algorithm for estimating skewed state-space models with Markov-switching. I

assume that the parameters governing the error terms of the transition equation follow a

synchronized two-states Markov-switching process, while the remaining parameters remain

constant.

From each simulation study, I generate 500 samples of time series of length T = 100,

T = 250 and T = 500. For estimation, I employ a Bayesian approach, and compare both the

Markov-switching skewed state-space model and the Markov-switching Gaussian state-space

model (Kim, 1994). I estimate the parameters governing the distribution ηt, namely µk,η,

Σk,η, and Γk,η, as well as transition probabilities pk,k for k = {1, 2}. All other parameters

are fixed at their true values.

The priors are defined in Table A.1. They are very dispersed and cover a large parameter

space, so that the likelihood dominates the information obtained in the posterior.

Table A.1: Prior Distribution.

Coefficient Name of Coefficient Density Para(1) Para(2)
[µk,η]j Location N 0.00 4.00
[Σk,η]jj Scale I-G 0.50 1.00
[Γk,η]jj Shape N 0.00 10.00
pk,k Transition probability B 0.85 0.15

Note: N stands for Normal, and B for Beta distributions. Para(1) and
Para(2) correspond to the means and standard deviations, respectively.
The location parameter [µk,η]j indicates the k-th regime and the j-th
column of [µst,η]; The scale parameter [Σk,η]jj indicates the k-th regime
and the j-th diagonal element of [Σst,η]; The shape parameter [Γk,η]jj
indicates the k-th regime and the j-th diagonal element of [Γst,η].

I consider synthetic data generated from three distinct data-generating processes (DGPs):

DGP(1) with 2 regimes, 1 latent state, and 1 observable; DGP(2) with 2 regimes, 2 latent

states, and 2 observables; and DGP(3) with 2 regimes, 1 latent state, and 4 observables.
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These configurations allow for a systematic assessment across varying levels of model com-

plexity. Overall, I demonstrate the proposed algorithm performs an excellent job.

A.1 DGP(1): 2 regimes, 1 latent state, 1 observable

I consider synthetic data generated from Markov-switching skewed state-space model with

2 regimes, 1 latent state, and 1 observable. The true model parameters are as follows:

F = 0.8, H = 10, µε = 0, Σε = 1,

µ1,η = −2.30, µ2,η = 1.50, Σ1,η = 2.00, Σ2,η = 1.00

Γ1,η = 3.00, Γ2,η = −1.50, ν1,η = ν2,η = 0, ∆1,η = ∆2,η = 1,

p1,1 = 0.90, and p2,2 = 0.95.

Table A.2 presents the results of the first simulation study based on DGP(1). For each

length, I report the average value and the 5th and 95th percentiles in square brackets. The

Markov-switching skewed state-space model delivers accurate estimates of the true parame-

ters, with performance improving as the sample size increases. In particular, the posterior

means of the regime-specific means and variances, such as µ1,η and Σ1,η, converge closely to

their true values for T = 500, and the percentile intervals narrow considerably. The skewness

parameters Γ1,η and Γ2,η are also estimated with increasing precision as sample size grows.

By contrast, the Gaussian model underestimates regime means and variances consistently

and fails to capture asymmetries altogether. The estimated transition probabilities are close

to their true values in both models, although the skewed model again performs slightly better

overall.
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Table A.2: Sampling Distributions — Simulation Study DGP(1)

MS Skewed State-space MS Gaussian State-space
Parameter True Value T=100 T=250 T=500 T=100 T=250 T=500
[µ1,η] −2.30 −2.03 −2.23 −2.28 −1.21 −1.26 −1.28

[−2.57;−0.61] [−2.49;−1.88] [−2.46;−2.11] [−1.54;−0.75] [−1.48;−1.04] [−1.43;−1.12]
[µ2,η] 1.50 1.19 1.39 1.43 0.86 0.86 0.86

[0.13;1.87] [0.71;1.74] [0.88;1.67] [0.69;1.04] [0.77;0.97] [0.77;0.93]
[Σ1,η] 2.00 2.11 1.95 2.00 0.86 0.70 0.64

[0.59;4.43] [0.94;3.13] [1.32;2.77] [0.40;1.68] [0.43;1.05] [0.46;0.88]
[Σ2,η] 1.00 1.07 1.00 0.96 0.55 0.53 0.53

[0.45;1.85] [0.50;1.56] [0.56;1.33] [0.38;0.78] [0.42;0.65] [0.45;0.62]
[Γ1,η] 3.00 3.63 3.46 3.26 − − −

[−1.02;9.14] [1.31;7.97] [1.91;5.33]
[Γ2,η] −1.50 −0.98 −1.33 −1.38 − − −

[−3.86;2.23] [−2.46;0.31] [−2.04;−0.02]
p1,1 0.90 0.92 0.90 0.90 0.91 0.88 0.87

[0.82;0.99] [0.82;0.95] [0.85;0.94] [0.79;0.98] [0.79;0.94] [0.80;0.93]
p2,2 0.95 0.95 0.95 0.95 0.95 0.94 0.93

[0.89;0.99] [0.92;0.98] [0.93;0.97] [0.88;0.99] [0.89;0.97] [0.90;0.96]

Note: Sampling distributions based on Markov-switching skewed state-space models and Markov-switching Gaussian state-space mod-
els. Each cell contains the average value and the 90 percent percentiles in brackets.

A.2 DGP(2): 2 regimes, 2 latent states, 2 observables

I consider synthetic data generated from a Markov-switching skewed state-space model with

2 regimes, 2 latent states and 2 observables. The true model parameters are as follows:

F = 0.9×

 cos(−ϱ) −sin(−ϱ)

sin(−ϱ) cos(−ϱ)

 , H =

 1 0

0 1

 , µε =

 0

0

 , Σε =

 1 0

0 1

 ,
µ1,η =

 0.3

−0.1

 , µ2,η =

 1

2

 , Σ1,η =

 0.6 0

0 0.3

 , Σ2,η =

 0.1 0

0 0.2

 ,
Γ1,η =

 0 0

0 0

 , Γ2,η =

 5 0

0 −3

 , ν1,η = ν2,η =

 0

0

 , ∆1,η = ∆2,η =

 1 0

0 1

 ,
p1,1 = 0.90, and p2,2 = 0.95,

with angle ϱ = π/4.

Table A.3 reports the results for the second simulation study. Regardless of the sample

size, the estimation results for the Markov-switching skewed state-space model using the

proposed approximation algorithm exhibit little bias in parameter estimates. The main
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difference observed with different sample sizes is that the skewness parameters under Regime

2, Γ2,η tend to come closer to their true values when T is larger. Furthermore, the uncertainty

around estimates appear to shrink as the sample size increases. Overall, the approximating

procedure employed in this paper appears to perform remarkably well.

Table A.3: Sampling Distributions — Simulation Study DGP (2)

MS Skewed State-space MS Gaussian State-space
Parameter True Value T=100 T=250 T=500 T=100 T=250 T=500
[µ1,η]1 0.30 0.31 0.31 0.30 0.30 0.31 0.30

[0.05;0.56] [0.16;0.46] [0.20;0.40] [0.04;0.54] [0.15;0.46] [0.19;0.40]
[µ1,η]2 −0.10 −0.11 −0.10 −0.10 −0.10 −0.10 −0.10

[−0.28;0.08] [−0.20;−0.00] [−0.17;−0.03] [−0.28;0.08] [−0.21;0.00] [−0.17;−0.03]
[µ2,η]1 1.00 1.05 1.02 1.01 1.21 1.21 1.21

[0.91;1.23] [0.94;1.19] [0.95;1.08] [1.16;1.26] [1.18;1.24] [1.19;1.24]
[µ2,η]2 2.00 1.91 1.94 1.97 1.71 1.72 1.72

[1.46;2.15] [1.67;2.10] [1.73;2.08] [1.64;1.79] [1.67;1.76] [1.68;1.74]
[Σ1,η]11 0.60 0.60 0.60 0.60 0.59 0.60 0.60

[0.30;0.94] [0.44;0.79] [0.48;0.71] [0.33;0.89] [0.44;0.79] [0.48;0.71]
[Σ1,η]22 0.30 0.29 0.29 0.30 0.30 0.30 0.30

[0.15;0.44] [0.22;0.38] [0.24;0.36] [0.16;0.44] [0.22;0.38] [0.25;0.36]
[Σ2,η]11 0.10 0.09 0.10 0.10 0.05 0.05 0.05

[0.04;0.15] [0.05;0.14] [0.07;0.12] [0.04;0.07] [0.04;0.06] [0.05;0.06]
[Σ2,η]22 0.20 0.20 0.19 0.20 0.12 0.12 0.12

[0.10;0.34] [0.11;0.29] [0.12;0.27] [0.08;0.16] [0.09;0.14] [0.10;0.13]
[Γ1,η]11 0.00 −0.00 −0.00 −0.00 − − −

[−0.00;−0.00] [−0.00;−0.00] [−0.00;0.00]
[Γ1,η]22 0.00 −0.00 −0.00 −0.00 − − −

[−0.00;−0.00] [−0.00;−0.00] [−0.00;0.00]
[Γ2,η]11 5.00 4.39 4.74 4.91 − − −

[0.04;10.04] [0.31;7.58] [3.07;6.63]
[Γ2,η]22 −3.00 −2.47 −2.58 −2.81 − − −

[−7.06;3.14] [−4.76;0.44] [−4.21;−0.03]
p1,1 0.90 0.90 0.90 0.90 0.90 0.90 0.90

[0.80;0.97] [0.84;0.95] [0.86;0.93] [0.80;0.97] [0.84;0.95] [0.86;0.94]
p2,2 0.95 0.95 0.95 0.95 0.95 0.95 0.95

[0.90;0.99] [0.92;0.98] [0.93;0.97] [0.89;0.98] [0.92;0.97] [0.93;0.97]

Note: Sampling distributions based on Markov-switching skewed state-space models and Markov-switching Gaussian state-space
models. Each cell contains the average value and the 90 percent percentiles in brackets.

Unlike the Markov-switching skewed state-space model, the estimation results for the

Markov-switching Gaussian state-space model show considerable bias in some parameter

estimates. For example, the estimated value for the location parameter under Regime 2,

[µ2,η]1, considerably overestimates the true value. This bias also appears for the estimated

value of the scale parameter under Regime 2, [Σ2,η]11, which underestimates the true value.

This bias is expected because the Gaussian assumption fails to account for skewness, resulting

in biased estimates for both the location and the scale parameters.
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A.3 DGP(3): 2 regimes, 1 latent state, 4 observables

I consider synthetic data generated from a Markov-switching skewed state-space model con-

sisting of 2 regimes, 1 latent state, 4 observables. The true model parameters are as follows:

F = 0.8, H =



10

2

5

−3


, µε =



0

0

0

0


, Σε =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,

µ1,η = −2.30, µ2,η = 1.50, Σ1,η = 2.00, Σ2,η = 1.00

Γ1,η = 0.00, Γ2,η = −3.50, ν1,η = ν2,η = 0, ∆1,η = ∆2,η = 1,

p1,1 = 0.90, and p2,2 = 0.95.

Table A.4 presents the estimation results for the third simulation study. Across all sam-

ple sizes, the Markov-switching skewed state-space model using the proposed approximation

method continues to yield estimates with minimal bias relative to the true parameter val-

ues. Notably, the estimation of the skewness parameter in Regime 2, Γ2,η, improves with

larger samples, with the average estimate converging closer to its true value of −3.50 and

its associated uncertainty narrowing. Compared to the Gaussian specification, the skewed

model recovers the regime-dependent means and variances more accurately, especially for

µ2,η and Σ2,η, where the Gaussian model exhibits clear bias. As before, the dispersion of the

sampling distributions decreases as T increases, indicating greater precision with more data.

These findings further support the effectiveness and reliability of the proposed approximation

algorithm under a more complex data-generating process.
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Table A.4: Sampling Distributions — Simulation Study DGP(3)

MS Skewed State-space MS Gaussian State-space
Parameter True Value T=100 T=250 T=500 T=100 T=250 T=500
[µ1,η] −2.30 −2.34 −2.30 −2.30 −2.28 −2.29 −2.28

[−2.98;−1.77] [−2.59;−1.98] [−2.52;−2.11] [−2.73;−1.62] [−2.59;−1.98] [−2.48;−2.06]
[µ2,η] 1.50 1.45 1.49 1.49 0.75 0.76 0.75

[1.20;1.65] [1.35;1.61] [1.39;1.59] [0.60;0.91] [0.64;0.86] [0.68;0.82]
[Σ1,η] 2.00 2.32 2.14 2.07 2.26 2.14 2.05

[1.02;4.54] [1.43;3.09] [1.59;2.65] [1.06;4.36] [1.45;3.05] [1.62;2.55]
[Σ2,η] 1.00 0.97 0.99 0.99 0.40 0.39 0.39

[0.51;1.49] [0.67;1.33] [0.79;1.19] [0.26;0.57] [0.31;0.48] [0.32;0.46]
[Γ1,η] 0.00 −0.00 −0.00 −0.00 − − −

[−0.00;0.00] [−0.00;0.00] [−0.00;0.00]
[Γ2,η] −3.50 −4.14 −3.64 −3.62 − − −

[−9.74;−1.55] [−5.42;−2.27] [−4.81;−2.61]
p1,1 0.90 0.91 0.90 0.90 0.90 0.89 0.89

[0.81;0.98] [0.84;0.95] [0.85;0.94] [0.77;0.97] [0.81;0.95] [0.84;0.93]
p2,2 0.95 0.95 0.95 0.95 0.95 0.94 0.95

[0.90;0.99] [0.92;0.98] [0.93;0.97] [0.89;0.99] [0.91;0.97] [0.92;0.97]

Note: Sampling distributions based on Markov-switching skewed state-space models and Markov-switching Gaussian state-space mod-
els. Each cell contains the average value and the 90 percent percentiles in brackets.
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B Data Description

B.1 Main Data Sources

All data are organized quarterly from the first quarter of 1959 to the fourth quarter of 2024.

Data comes from the FRED, Federal Reserve Economic Data:

• Real GDP growth: GDPC1

• Real personal income excluding current transfer receipts: W875RX1

• Real Manufacturing and Trade Industries Sales: CMRMTSPL

• All Employees, Total Nonfarm: PAYEMS

Data are expressed as one hundred times the first difference of the logarithm of each

variable. Data are then standardized by subtracting the sample mean from each variable

and dividing by its standard deviation. Figure B.1 displays the time series data prior to

standardization.
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B.2 Figure

Figure B.1: Data set for the Dynamic Factor Model with Markov-switching
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Panel B.  Real personal income
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Panel C. Real Manufacturing and trade sales
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Panel D. Total Employment
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Note: Sample period: 1959.Q2 — 2024.Q4. The yellow areas denote the NBER-dated recessions.
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C The State-Space Form of the Dynamic Factor Model

In this section, I outline the state space form of the dynamic factor model presented in the

main manuscript. Consider the following general skewed state-space model with Markov-

switching:

xt = Fstxt−1 + ηt,

yt = Hstxt + εt,

with ηt and εt are assumed to follow closed skew-normal and normal distributions, respec-

tively:

ηt ∼ closed skew-normal (µst,η,Σst,η,Γst,η,νst,η,∆st,η) ,

εt ∼ normal (µst,ε,Σst,ε) .

Here, yt is a vector of contemporaneous endogenous variables, while xt is a vector of un-

observed state variables. For 1 ≤ i, j ≤ K, the discrete and unobserved variable st is an

exogenous first-order Markov process with the transition matrix P :

P =



p1,1 p1,2 · · · p1,K

p2,1 p2,2 · · · p2,K
...

...
. . .

...

pK,1 pK,2 · · · pK,K


,

where K is the total number of regimes; and pi,j = Pr(st = j|st−1 = i) denotes the transition

probability that st is equal to j given that st−1 is equal to i, with pi,j ≥ 0 and
∑K

j=1 pi,j = 1.

The skewed dynamic factor model with Markov-switching, presented in the main manuscript,
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can be summarized as follows:

yi,t = γint + zit, i = 1, 2, 3, 4,

zit = ψizit−1 + ςit, ςit ∼ normal
(
0, σ2

i,ς

)
,

nt = ϕ1nt−1 + ϑt, ϑt ∼ closed skew-normal(µslocationt ,ϑ, σ
2
sscalet ,ϑ, αsshapet ,ϑ, 0, 1),

where the variable st =
{
slocationt , sscalet , sshapet

}
or in a more concise manner st =

{
sloct , ssct , s

sh
t

}
contains the three unobserved variables that follow independent first-order two-states Markov

processes. It implies that the total number of regimes is K = 8.

A state-space representation of the model is given by:

xt = Fxt−1 + ηt,

yt = Hxt,

where the state, measurement and error variables are as follows:

yt =



y1t

y2t

y3t

y4t


, xt =



z1t

z2t

z3t

z4t

nt


, ηt =



ς1t

ς2t

ς3t

ς4t

ϑt


,

and transition and measurement equations are not dependent upon the state variable st:

F =



ψ1 0 0 0 0

0 ψ2 0 0 0

0 0 ψ3 0 0

0 0 0 ψ4 0

0 0 0 0 ϕ1


, H =



1 0 0 0 γ1

0 1 0 0 γ2

0 0 1 0 γ3

0 0 0 1 γ4


,
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.

The state errors ηt follows the Markov-switching closed skew-normal distribution with

the following parameters:

µslot =1,η =
[
0, 0, 0, 0, µslot =1,ϑ

]′
, µslot =2,η =

[
0, 0, 0, 0, µslot =2,ϑ

]′
,

Σssct =1,η = diag
([
σ1,ς , σ2,ς , σ3,ς , σ4,ς , σssct =1,ϑ

])
, Σssct =2,η = diag

([
σ1,ς , σ2,ς , σ3,ς , σ4,ς , σssct =2,ϑ

])
,

Γssht =1,η = diag
([

0, 0, 0, 0, αssht =1,ϑ

])
, Γssht =2,η = diag

([
0, 0, 0, 0, αssht =2,ϑ

])
,

νst,η = νη = 05×1, ∆st,η = ∆η = I5×1,

where diag is the matrix operation which transforms a vector into a diagonal matrix. The

measurement errors εt are dropped from the model.

During the Covid-19 period, the model is adjusted and includes four additional parame-

ters: the three scale parameters c0, c1 and c2, and the decay rate ρ. These modifications to

the model are highlighted in red:

Σssct =1,η = ctdiag
([
σ1,ς , σ2,ς , σ3,ς , σ4,ς , σssct =1,ϑ

])
, Σssct =2,η = ctdiag

([
σ1,ς , σ2,ς , σ3,ς , σ4,ς , σssct =2,ϑ

])
,

where ct is equal to 1 before the time period in which the epidemic begins, which I denote by

t∗ =2020.Q2. I then assume that ct∗ = c0, ct∗+1 = c1, ct∗+2 = c2, and ct∗+j = 1 + (c2 − 1)ρj−2,

with [c0, c1, c2, ρ] the vector of unknown parameters.

The vector of parameters to be estimated by Bayesian inference is as follows:

θ = [ψ1, ψ2, ψ3, ψ4, ϕ1, γ1, γ2, γ3, γ4, σ1,ς , σ2,ς , σ3,ς , σ4,ς , µ1,ϑ, µ2,ϑ, σ2,ϑ, α1,ϑ, α2,ϑ, c0, c1, c2, ρ] .
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D Identification of the Macroeconomic Factor

In this section, I show that there is an identification issue with the baseline model, and

an additional normalization is needed. The demonstration presented here is drawn and

adapted from a case study by Guerrón-Quintana, Khazanov, and Zhong (2024). This issue

is not specific to the non-Gaussian framework of the model and it is similar to that of a

Gaussian environment. To prove this, it is convenient to use a constant-parameters version

of the model:12

yi,t = γint + zit, i = 1, 2, 3, 4,

zit = ψizit−1 + σi,ςςit, ςit ∼ normal (0, 1) , (16)

nt = µϑ + ϕ1nt−1 + σϑϑt, ϑt ∼ closed skew-normal(0, 1, σϑαϑ, 0, 1).

Consider the following constant a ̸= 0 and scale the system in equation (16) as follows:

12The closed skew-normal distribution is closed under linear transformations. Let X be a d-dimensional
random variable as follows X ∼ closed skew-normal (µx,Σx,Γx,νx,∆x) and A be a full-rank d× d matrix,
then

Y = AX ∼ closed skew-normal (µy,Σy,Γy,νy,∆y) ,

with µy = Aµx, Σy = FΣxF
′, Γy = ΓxF

−1, νy = νx, and ∆y = ∆x.
Thus, the law of motion of the macroeconomic factor in equation (16) is equivalent to

nt = µϑ + ϕ1nt−1 + ϑt,

ϑt ∼ closed skew-normal(0, σ2
ϑ, αϑ, 0, 1),

and to

nt = ϕ1nt−1 + ϑt,

ϑt ∼ closed skew-normal(µϑ, σ
2
ϑ, αϑ, 0, 1).
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yi,t = γi

(
1

a

)
ant + zit,

azit = ψiazit−1 + aσi,ςςit,

ant = aµϑ + ϕ1ant−1 + aσϑϑt.

Then, define ñt = ant, γ̃i = γi
(
1
a

)
, z̃it = azit−1, σ̃i,ς = aσi,ς , µ̃ϑ = aµϑ, and σ̃ϑ = aσϑ, and

rewrite the system as follows:

yi,t = γ̃iñt + zit,

z̃it = ψiz̃it−1 + σ̃i,ςςit, (17)

ñt = µ̃ϑ + ϕ1ñt−1 + σ̃ϑϑt,

The “tilde” model in equation (17) and the baseline model in equation (16) are observa-

tionally equivalent because they imply the same distribution of yit for i = 1, 2, 3, 4. The

lack of identification is resolved by imposing a mathematically convenient normalization. In

particular, the factor loading γ1 can be normalized to one. This corresponds to the named

factor normalization in the DFM literature (e.g., Stock and Watson, 2016). An alternative

normalization is to fix the scale parameter to a value of one to identify the scale of the index

nt.
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E Model Comparison

The baseline model assumes that the times of changes for a specific parameter are stochasti-

cally independent of the times of changes for another one. Here, I relax this assumption and

assume that location, scale, and shape parameters switch at the same time. Say it differently,

there is only one Markov-switching process (also called “chain”) governing all parameters

of the model. I compare the fit of this synchronized-chain model with that of the baseline

model, and show that the the independent-chains model is preferred.

I employ the Watanabe-Akaike Information Criterion (WAIC), introduced by Watanabe

(2010), for purposes of model comparison. WAIC evaluates the predictive accuracy for a

fitted model by computing the log pointwise predictive density corrected from the effective

number of parameters to adjust for overfitting. WAIC offers two main advantages. First,

it is fully Bayesian in that it is based on the usual posterior simulations of the parameters.

Second, it is invariant to parametrization.

WAIC is defined as follows:

WAIC = log(lpd)− p, (18)

where log(lpd) is the log pointwise predictive density, i.e.,
∑T

t=1 log
(

1
S

∑S
s=1 p(yt|θs)

)
with

p(yt|θs) is the predictive density at time t conditional on the set of parameters θs, and S

is the number of MCMC iteration; and p is the estimated effective number of parameters,

computed based on the posterior variance of the log predictive density for each data point

yt:

p =
T∑
t=1

V S
s=1(log(p(yt|θs)),

with V represent the sample variance, V S
s=1as = 1

S−1
(as − ā)2. It is trivial to compute the

standard error by computing the standard deviation of the T components and multiplying
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by
√
T . Define

WAICt = log

(
1

S

S∑
s=1

p(yt|θs)

)
−
(
V S
s=1log p(yt|θs)

)
,

so that WAIC in (18) is the sum of these t independent terms. Then the standard deviation

of WAIC is defined as follows

se(WAIC) =
√
(T ∗ V T

t=1WAICt).

When comparing two fitted models, say models A and B, one can estimate the difference

in their expected predictive accuracy by the difference in WAIC. The standard error of this

difference can be computed as follows:

se(WAICA −WAICB) =

√
T ∗ V T

t=1(WAICA
t −WAICB

t ).

Table E.1 reports the value and the standard error of WAIC for synchronized- and

independent-chains models, as well as their difference. Clearly the specification of independent-

chains outperforms that of synchronized-chains as the estimated difference in their expected

predictive accuracy is well above zero. This is more clearly appreciated when taking into

account the uncertainty (in terms of standard errors) of their difference.

Table E.1: Information criteria

WAIC standard errors

Independent-chains model −868.5482 43.1326

Synchronized-chains model −875.6439 41.9749

Relative difference 7.0957 5.1583

Note: A model with a higher WAIC is preferred in a model com-
parison.
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F Results when excluding the post-Covid-19 period

Table F.1: Prior and Posterior Distributions.

Prior Posterior
Coefficient Density Para(1) Para(2) Mode Median [5; 95]
γ2 N 1.00 1.00 0.8226 0.8179 0.7252 0.9228
γ3 N 1.00 1.00 0.9666 0.9628 0.8485 1.0811
γ4 N 1.00 1.00 0.9638 0.9377 0.8506 1.0467
ϕ1 N 0.00 1.00 0.4665 0.4800 0.3638 0.6409
ψ1 N 0.00 1.00 −0.2304 −0.2328 −0.3390 −0.1263
ψ2 N 0.00 1.00 −0.1328 −0.1367 −0.2407 −0.0362
ψ3 N 0.00 1.00 0.0151 0.0385 −0.0929 0.1772
ψ4 N 0.00 1.00 0.8411 0.8278 0.7677 0.8888
σ1,ς I-G 0.50 1.00 0.5949 0.5941 0.5378 0.6522
σ2,ς I-G 0.50 1.00 0.6732 0.6812 0.6425 0.7220
σ3,ς I-G 0.50 1.00 0.2323 0.2761 0.1647 0.5919
σ4,ς I-G 0.50 1.00 0.2260 0.2369 0.1947 0.2846
σsscale=1,ϑ I-G 0.50 1.00 0.3283 0.3242 0.2886 0.3707
σsscale=2,ϑ I-G 0.50 1.00 0.9798 0.9827 0.8344 1.1714
αsshape=1,ϑ N 0.00 5.00 8.7863 8.1547 1.7042 13.9572
αsshape=2,ϑ N 0.00 5.00 −5.2703 −6.7355 −12.8847 −3.1728
µslocation=1,ϑ N 0.00 2.00 0.1680 0.1924 0.0309 0.3186
µslocation=2,ϑ N 0.00 2.00 −0.2463 −0.2487 −0.3886 −0.0243
plocation1,1 B 0.85 0.15 0.9640 0.9401 0.8147 0.9892
plocation2,2 B 0.85 0.15 0.9879 0.9683 0.8681 0.9961
pscale1,1 B 0.85 0.15 0.9817 0.9737 0.9375 0.9916
pscale2,2 B 0.85 0.15 0.9659 0.9458 0.8859 0.9845

pshape1,1 B 0.85 0.15 0.9269 0.9074 0.8344 0.9542

pshape2,2 B 0.85 0.15 0.7934 0.8038 0.6768 0.9322

Note: N stands for Normal, B for Beta, I-G for Inverse-Gamma, and P for Pareto distributions.
Para(1) and Para(2) correspond to the means and standard deviations for the N, B, and I-G
distributions, and to the scale and shape parameters for P distributions. The 5 percent and 95
percent demarcate the bounds of the 90 percent probability interval. For identification issue, γ1
is set to 1.
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Figure F.1: Regime Probabilities
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Note: Sample period: 1959.Q2 — 2019.Q4. Evolution of regime probabilities (at the mode) produced
from the Markov-switching DFM specification specified by equations (1)-(6). Panels A, B, and C report
the probabilities of being in Regime 2 for the three Markov-switching process, slocation, sscale, and sshape,
respectively. Probabilities are smoothed in the sense of Kim (1994); i.e., full sample information is used in
getting the regime probabilities at each date.
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G The Moments

G.1 Methodology

Timmermann (2000) characterizes the moments of the ergodic distribution of Gaussian

Markov-switching models. Perez-Quiros and Timmermann (2001) extend the approach to

cover the first four conditional moments. Lhuissier (2022) complements these works for the

case where within-regime innovations follow a skew-normal distribution. In this section, I

show how to extend the approach of Lhuissier (2022) for the case where innovations have a

special form of closed skew-normal distribution.

Consider the following p-order autoregressive skew-normal Markov-switching process:

yt =

p∑
j=1

φjyt−j + νt,

νt ∼ closed skew-normal(µst , σ
2
st , αst , 0, 1),

where φj is the j-order autoregressive parameter; and st is an exogenous K-states first-order

Markov process. The above process is equivalent to

yt = µst +

p∑
j=1

φjyt−j + σstςt,

ςt ∼ closed skew-normal(0, 1, α̂st , 0, 1),

where α̂st = σstαst and ςt is the standardized skew-normal distribution of Azzalini (1985).13

By expressing ςt as a skew-normal distribution, I can use the formulas developed by Lhuissier

(2022) to compute moments. Recall that pi,t = Pr(st = i|ξt−1, θ) is the (filtered) probability

of being in regime i, with i ∈ {1, . . . , K}, at time t given information at time t−1, ξt−1, and

define µ̃i,t = µi +
∑p

i=j φjyt−j. From the law of iterated expectations, the centered moments

13The distribution ςt ∼ closed skew-normal(0, 1, α̂st , 0, 1) is equivalent to ςt ∼ skew-normal(0, 1, α̂st).
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of the process are given by

E[(yt − µ̃t)
n|ξt−1, θ] = E [E[(yt − µ̃t)

n|ξt−1, θ, st]] ,

=
K∑
i=1

E[(µ̃i,t + σi,tςt − µ̃t)
n|ξt−1, θ],

=
K∑
i=1

pi,t

n∑
j=0

Cn
j σ

j
i,tE(ς

j
t )(µ̃i,t − µ̃t)

n−j,

where I used Newton’s binomial formula. The expression for the case where ςt follows a

normalized skew-normal distribution is based on the moment-generating function (see Section

2.1.4 in Azzalini (2013) for further details). Specifically, it implies that

E[(yt − µ̃t)
n|ξt−1, θ] =

K∑
i=1

pi,t

n∑
j=0

Cn
j σ

j
i,tai,j(µ̃i,t − µ̃t)

n−j,

with ai,j is the j-th raw moment of ςt conditional on regime i as described below

ai,j =

√
2

π

sgn(α̂i)

α̂j+1
i

Kj(α̂
−2
i ),

where

Kj(h) =
j − 1

h
Kj−2(h) +

υj−1

h(1 + h)j/2
, j = 2, 3, . . .

and υk is the k-th raw moment of the standard normal distribution, that is,

υk =


0 if k = 1, 3, 5, . . .

(k − 1)!! if k = 2, 4, 6, . . .

For j = 0, 1, Kj(h) is defined as follows

K0(h) =
( π
2h

)1/2
, and K1(h) =

1

h
√
1 + h

.
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Simplifying the expression ai,j for j = 0, . . . , 4, it follows that

ai,0 = 1,

ai,1 =
α̂i

√
2√

1 + α̂2
i

√
π
,

ai,2 = 1,

ai,3 =

(
α̂i

√
2
)
(3 + 2α̂2

i )√
π(1 + α̂2

i )
3/2

,

ai,4 = 3.

While the first and second moments, E[yt|ξt−1, θ] = µ̃t and E[(yt − µ̃t)
2|ξt−1, θ] are not

transformed, I characterize the third (n = 3) and fourth (n = 4) moments with their cor-

responding standardized moments, defined respectively as the coefficient of skewness (
√
b1)

and the coefficient of excess kurtosis (b2) as follows

√
b1 ≡

E[(yt − µ̃t)
3]

(E[(yt − µ̃t)2])
3/2
, b2 ≡

E[(yt − µ̃t)
4]− 3 (E[(yt − µ̃t)

2])
2

(E[(yt − µ̃t)2])
2 .

In the context of the model stated in this paper, one can use the information up to time

t to infer the moments.

G.2 Empirical Evidence

Figure G.1 presents the time-varying moments of the distribution of the macroeconomic

factor. There is a clear cyclical pattern in the mean of the common factor which declines

toward the end of expansions and rise during the end of the recession periods (Panel A). It

may be worth mentioning that the decline in the mean during recessions is not only driven

by shifts in the location parameter of the model, but also by shifts in the scale and shape

parameters, as well as transition probabilities. Thus this explains why the mean declines so
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dramatically during the Great Recession, whereas in Figure 1 of the main manuscript, there

is no shift in the location parameter during that period.

Turning to the second moment, the common factor generates clear counterfactual pat-

terns, with higher volatility occurring during the pre-Great Moderation, the Great Recession

and the Covid-19 crisis. The Covid-related peak is largely driven by estimated scaling factors,

which affect the scale parameters of the distributions of the model.

Regarding skewness, the reader should refer to the main manuscript for detailed com-

ments.

Finally, the coefficient of excess kurtosis has a tendancy to rapidly decline during the

three recessions, meaning that the distribution of the macroeconomic factor was relatively

flat during these episodes. For the rest of the sample, it remains relatively stable, with

short-lived oscillations.
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Figure G.1: Moments of the macroeconomic factor, nt
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Note: Sample period: 1959.Q2 — 2024.Q4. Each panel reports the median in black solid line along with the 68% and 90% error bands in blue. The
yellow areas denote the NBER-dated recessions.
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H Prior and Posterior Distribution of Parameters

Figure H.1: Prior and Posterior Distribution of Parameters
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I Alternative Macroeconomic Skewness Measures based

on Quantiles

In addition to the macroeconomic skewness measure derived from the third central moment

reported in the main analysis, I also compute alternative, quantile-based macroeconomic

skewness measures to assess distributional asymmetry without relying on moment assump-

tions. These non-parametric measures provide robustness to outliers and heavy tails and

serve as a useful cross-check of the results.

Specifically, I implement two versions of Kelley (1947)’s skewness measure, defined as

follows:

SkewnessK(p) =
Q1−p +Qp − 2Q0.5

Q1−p −Qp

,

where Qp denotes the p-th quantile of the distribution. I compute this measure for two

symmetric percentile pairs:

• Kelley(90/10) Skewness, using the 90th and 10th percentiles:

SkewnessK(0.10) =
Q0.90 +Q0.10 − 2Q0.50

Q0.90 −Q0.10

• Kelley(95/5) Skewness, using the 95th and 5th percentiles:

SkewnessK(0.05) =
Q0.95 +Q0.05 − 2Q0.50

Q0.95 −Q0.05

These alternative measures provide a quantile-based view of asymmetry that comple-

ments the moment-based skewness used in the main text. The results are consistent with

the overall conclusions and are available in Figures I.1 and I.2.
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Figure I.1: Macroeconomic Skewness — Kelley(90/10)
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Note: Sample period: 1959.Q2 — 2024.Q4. Evolution of macroeconomic skewness produced using the
Kelley’s measure. The median is reported in black solid line and the 68% and 90% error bands in blue areas.
The yellow areas denote the NBER-dated recessions.
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Figure I.2: Macroeconomic Skewness — Kelley(95/5)
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Note: Sample period: 1959.Q2 — 2024.Q4. Evolution of macroeconomic skewness produced using the
Kelley’s measure. The median is reported in black solid line and the 68% and 90% error bands in blue areas.
The yellow areas denote the NBER-dated recessions.
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J Forecasting

J.1 Methodology

Consider the following state-space representation of a skewed dynamic factor model with

regime switching:

yt = Hstxt + εt, t = 1, . . . , T,

xt = Fstxt−1 + ηt,

εt ∼ normal (µst,ε,Σst,ε) ,

ηt ∼ closed skew-normal (µst,η,Σst,η,Γst,η,νst,η,∆st,η) ,

pi,j = Pr(st = j|st−1 = i), i, j = 1, . . . , K,

where yt is an N × 1 vector of observed variables, xt is an J × 1 vector of state variables, εt

and ηt are vectors of measurement and transition shocks, containing ςit and ϑt. For simplicity

of exposition, it is assumed that there is no measurement errors (εt = 0).

Model forecasts can be computed based on draws from the posterior predictive distri-

bution of yT+1:T+H , with the sequence t1 : t2 indicating the periods from t1 to t2. I use

the parameter draws
{
θ(j)
}nsim
j=1

generated with the RWMH algorithm as a starting point.

Specifically, I generate draws from the posterior predictive density using the following de-

composition:

p(yT+1:T+h|y1:T ) =

∫
(θ,xT ,sT )

[∫
xT+1:T+h,ST+1:T+h

p(yT+1:T+h|xT+1:T+h)

× p(xT+1:T+h, sT+1:T+h|θ,xT , sT ,y1:T )d(xT+1:T+h, sT+1:T+h)

]

× p(θ,xT , sT |y1:T )d(θ,xT , sT ).

The decomposition shows how the predictive density reflects uncertainty about parameters
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and states at the forecast origin, p(θ,xT , sT |y1:T ), and uncertainty about future states. Moti-

vated by this decomposition, I generate draws from the predictive density taking into account

the hidden Markov regimes st.

Algorithm (Predictive Density Draws)

For j = 1, 2, . . . , nsim,

1. Draw θ(j),x
(j)
T , s

(j)
T from the posterior distribution p(θ,xT , sT |y1:T ).

2. Draw p
(
xT+1:T+h, sT+1:T+h|θ(j),x(j)

T , s
(j)
T

)
as follows:

(a) Draw p
(
sT+1:T+h|θ(j), s(j)T

)
from the transition matrix P (j) and the regime s

(j)
T ;

(b) Draw the sequence of shock innovations η
(j)
T+1:T+h:

η
(j)
T+1:T+h ∼ closed skew-normal

(
µ

s
(j)
t ,η

,Σ
s
(j)
t ,η

,Γ
s
(j)
t ,η

,ν
s
(j)
t ,η

,∆
s
(j)
t ,η

)

with t = T + 1, . . . , T +H.

(c) Starting from x
(j)
T , iterate the state transition equation forward:

x
(j)
t = F

(
θ(j)
)
s
(j)
t

x
(j)
t−1 + η

(j)
t , t = T + 1, . . . , T +H.

3. Compute the sequence y
(j)
T+1:T+h using the measurement equation:

y
(j)
t = H

(
θ(j)
)
st
x
(j)
t , t = T + 1, . . . , T +H.

This algorithm produces nsim trajectories y
(j)
T+1:T+h from the predictive distribution of y

(j)
T+1:T+h

given yT . In my subsequent empirical work, I take 10,000 draws from the posterior distribu-

tion p(θ,xT , sT |y1:T ). I discard the first 1,000 draws and select every 10th draws to get 1,000

draw of parameters and initial states. For each of these draws, I execute Steps 2 and 3 of the

algorithm 10 times, which produces a total of 10, 000 draws from the predictive distribution.
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J.2 Additional Figures

Figure J.1: Out-of-sample Predictions — Macroeconomic Factor.
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Note: Sample period: 1992.Q1 — 2019.Q4. Time series evolution of the predicted distribution of one quarter
ahead (panel a) and four quarter ahead (panel b) macroeconomic factor. The median is reported in black
solid line and the 68% and 90% error bands in blue areas.

Figure J.2: Comparison of Out-of-sample Predictions — Real GDP Growth.
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(b) Four-quarter ahead
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Note: Sample period: 1992.Q1 — 2019.Q4. Time series evolution of the predicted distribution of one quarter
ahead (panel a) and four quarter ahead (panel b) real GDP growth.
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Figure J.3: Comparison of Expected Shortfalls — Real GDP Growth.

(a) One-quarter ahead
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Note: Sample period: 1992.Q1 — 2019.Q4. Time series evolution of the predicted distribution of one quarter
ahead (panel a) and four quarter ahead (panel b) real GDP growth.

Figure J.4: Cumulative Quantile Scores — Real GDP Growth.
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Note: Sample period: 1992.Q1 — 2019.Q4. Cumulative sums of quantile scores for one quarter ahead (panel
a) and four quarter ahead (panel b) of the 5th percentile of real GDP growth. Lower values signify better
performance.
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Figure J.5: Macroeconomic Skewness — Out-of-sample Estimates
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Note: Sample period: 1992.Q1 — 2019.Q4. Evolution of macroeconomic skewness produced using the
parameter estimates obtained recursively from 1992.Q1 to 2019.Q4. The median is reported in black solid
line and the 68% and 90% error bands in blue areas. The yellow areas denote the NBER-dated recessions.
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