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Abstract. Using a Markov-switching VAR, we show that the effects of uncertainty shocks

on output are four times higher in a regime of economic distress than in a tranquil regime.

We then provide a structural interpretation of these facts. To do so, we develop a business

cycle model, in which agents are aware of the possibility of regime changes when forming

expectations. The model is estimated using a Bayesian minimum distance estimator that

minimizes, over the set of structural parameters, the distance between the regime-switching

VAR-based impulse response functions and those implied by the model. Our results point

to changes in the degree of financial frictions. We discuss the implications of this structural

interpretation and show that the expectation effect of regime switching in financial conditions

is an important component of the financial accelerator mechanism. If agents hold pessimistic

expectations about future financial conditions, then shocks are amplified and transmitted

more rapidly to the economy.
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I. Introduction

It has been well documented that higher uncertainty reduces aggregate activity, leading to

higher unemployment, and lower investment and output.1 Recent empirical studies have also

emphasized highly nonlinear effects, depending on the state of the economy; adverse effects

of uncertainty shocks are greater in periods of economic distress than in tranquil periods.2

However, little is known about the structural factors in accounting for these changes as

inference of nonlinear relationships presents econometric challenges within a quantitative

general equilibrium framework.

The objective of this paper is to fill part of this gap by exploring, through a novel econo-

metric estimation, potential changes in the underlying structure of the economy that could

explain such a nonlinearity. Disentangling the causes is important for understanding the

extent to which economic activity can respond to future uncertainty shocks as well as the

role that policy can play in order to mitigate those adverse effects.

We first reproduce the empirical evidence of highly nonlinear effects within a Markov-

switching Structural Vector Autoregression (MS-SVAR) framework. We use U.S. quarterly

data and include GDP growth, a measure of uncertainty (i.e., the VIX index), and a credit

spread. The model identifies two distinct regimes. The first was seen in nearly all the years

of episodes of high inflationary pressure in the 1970s and 1980s, during serious turbulence

that marked 2001-2003 period (including the 9/11 terrorist attacks, Dot-com bubble, and

corporate scandals), and during the global financial crisis. The second covers periods of

tranquility. We show that, under the first regime, the adverse output effects of an increase

in uncertainty appear to be four times higher than under the second regime.

We then focus on the potential explanations for this regime-dependent evidence by es-

timating the key macroeconomic and financial parameters of a Markov-switching Dynamic

Stochastic General Equilibrium (MS-DSGE) model with financial frictions, as in Bernanke,

Gertler, and Gilchrist (1999), and uncertainty shocks along the line of Christiano, Motto, and

1See, among others, Bloom (2009), Stock and Watson (2012), Glover and Levine (2015), Leduc and Liu

(2016), Basu and Bundick (2017), and Bloom, Floetotto, Jaimovich, Saporta, and Terry (2018).
2See Caggiano, Castelnuovo, and Groshenny (2014), Caggiano, Castelnuovo, and Nodari (2017), and

Alessandri and Mumtaz (2018).
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Rostagno (2014).3 Our empirical approach is analogous to the impulse response matching

approach used by Rotemberg and Woodford (1997) and Christiano, Eichenbaum, and Evans

(2005), except that we are estimating the parameters to fit our regime-dependent impulse

responses from a MS-SVAR, as opposed to impulse responses from a constant-parameters

SVAR. To the best of our knowledge, our paper represents the first attempt to estimate a

medium-scale Markov-switching DSGE model by matching the MS-SVAR-implied impulse

responses to those produced by the MS-DSGE model. We believe our MS-SVAR-implied

impulse responses approach is a promising tool to infer MS-DSGE models, and can be seen

as an alternative to the full Bayesian approach implemented notably by Liu, Waggoner, and

Zha (2011) and Bianchi (2013).

Our estimates imply that the differences in impulse responses across regimes result mainly

from changes in the degree of financial frictions. In particular, lenders pay a much higher

monitoring cost in the distress regime than in the tranquil regime, implying therefore a more

powerful financial accelerator; i.e., linkages between the quality of borrowers’ balance sheets

and their access to external finance are strengthened. It then becomes straightforward to

understand why the response of the economy to uncertainty shocks differs across regimes.

When uncertainty rises, banks protect themselves by raising the interest rate charged on

loans to firms (i.e., external finance premium), as there are more low-productivity firms —

and also more high-productivity firms, but this does not benefit to banks — and thus more

default risks. It follows a decline in demand for capital, and so in investment spending and

economic activity. In distress periods, the premium becomes much more sensitive to changes

in the firm’s balance sheet, causing firms to make larger cut to their investment projects, and

therefore, implying a larger and longer-lasting decline in economic activity.

The key insight of our MS-DSGE model is that variations in the MS-SVAR dynamics

of the effects of uncertainty shocks have important effects on rational agents’ expectation

formation of the MS-DSGE model. Our estimates lie in the fact that agents are aware of

the possibility of regime switches in the dynamics. That is, our MS-SVAR-based impulse

response matching approach takes into account the fact that all agents of the MS-DSGE

3Christiano, Motto, and Rostagno (2014) refer to risk shocks rather than uncertainty shocks. As stated in

Bloom (2014), uncertainty is “a stand-in for a mixture of risk and uncertainty” in this literature. In our model,

as in Christiano, Motto, and Rostagno (2014), uncertainty shocks shift the variance of the cross-sectional

distribution of idiosyncratic productivity shocks.
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model know the probabilities assigned by the Markov-switching process of the MS-SVAR

model and use them when forming expectations.

Under these circumstances, in any given regime, agents anticipate that uncertainty shocks

may be accompanied by a switch to the other regime, altering considerably the macroeco-

nomic outcomes. We consider how these expectation effects, using the terminology of Liu,

Waggoner, and Zha (2009)4, on a particular regime may affect equilibrium in the other regime.

In tranquil periods, characterized by a small degree of agency problems, agents may expect

that the economy will move to the distress regime. This over-pessimistic behavior, antici-

pating that the possibility that the agency problems may become more severe in the future,

will lead to amplify the contractionary effects of uncertainty shocks on aggregate activity.

Conversely, an over-optimistic behavior dampens these negative effects. As a result, the ex-

pectation effects of regime shifts in financial conditions are part of the financial accelerator

mechanism.

This paper proceeds as follows. Section II relates our contributions to the literature. To

illustrate the possibility of nonlinearity between uncertainty and the macroeconomy, Section

III provides empirical insights into how different the impact of uncertainty on aggregate ac-

tivity is between distress and non-stress periods. Section IV interprets these differences in

terms of an estimated DSGE model with financial frictions, in which agents form expecta-

tions on possible changes on the economy, and investigates the expectation effects of regime

switching in the degree of financial frictions. Section V concludes.

II. Literature review

This paper is related to an increasing literature that examines how uncertainty manifests

itself and what their effects are on the rest of the economy.

Focusing on the United States, Bloom (2009), Stock and Watson (2012), Bekaert, Hoerova,

and Duca (2013), Glover and Levine (2015), Leduc and Liu (2016), Basu and Bundick (2017),

Creal and Wu (2017) and Ferrara and Guérin (2018), employ the “constant-parameters”

approach to quantify the role of uncertainty on business cycle fluctuations. In particular,

all studies adopt linear SVARs and find a significant and long-lasting decrease of aggregate

4Liu, Waggoner, and Zha (2009) originally defined the expectation effects for monetary policy as ”the

difference between equilibrium outcome from a model that ignores probabilistic shifts in future policy regime

and that from a model that takes into account such expected changes in regime”.
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activity after a positive uncertainty shock. Empirical studies have been rapidly interested in

their time-varying effects as events of high uncertainty did not always seem to spill over to

the economy.5

Mumtaz and Theodoridis (2016) extend the standard approach by allowing time-varying

parameters in SVARs. They emphasize the importance of taking into account shifts in the

generation of uncertainty shocks. They show, in particular, the impact of uncertainty shocks

on aggregate activity has declined over time. However, the limitation of this paper to study

episodes of distress, as considered herein, lies in the methodology itself — a model with

smooth and drifting coefficients seems to be less suited for capturing rapid shifts in the

behavior of the data as observed during distress periods. Economic or financial crises are

well-known for hitting the economy instantaneously, which favors models with abrupt changes

like Markov-switching models. Therefore, we follow Sims and Zha (2006) and estimate a MS-

SVAR with Bayesian methods. Hubrich and Tetlow (2015) and Lhuissier (2017) also consider

a MS-SVAR framework to capture regime switching in macroeconomic time series in distress

periods.

Employing an alternative regime-switching method (i.e., a threshold VAR model), Caggiano,

Castelnuovo, and Groshenny (2014), Caggiano, Castelnuovo, and Nodari (2017), and Alessan-

dri and Mumtaz (2018) show that the real effects of uncertainty shocks strongly depend on

the state of the economy. In particular, Alessandri and Mumtaz (2018) show that the effects

depend on the state of financial markets and estimate that the impact on output is five times

larger in periods of financial stress than in tranquil periods, while Caggiano, Castelnuovo,

and Groshenny (2014) and Caggiano, Castelnuovo, and Nodari (2017) capture recession and

expansion phases and show that uncertainty shocks are substantially more costly under re-

cessions than under expansions. Our approach clearly differs since we assign probabilities

to events and, therefore, we avoid to make the assumption that the probability of a regime

switch is either one or zero. Moreover, estimating these probabilities is essential to analyze

the importance of expectation effects of regime shifts in equilibrium dynamics of our MS-

DSGE model, and therefore, in the transmission mechanism of uncertainty shocks to the

aggregate economy.

5Bloom (2009) documents a variety of events that generate significant uncertainty about the future, but

they are not always associated with large decline in output.
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Our analysis is related to a growing body of evidence which documents the interactions

between uncertainty and financial conditions within an equilibrium business cycle frame-

work — notable examples are Christiano, Motto, and Rostagno (2014), Gilchrist, Sim, and

Zakraǰsek (2014), Bloom, Alfaro, and Lin (2019), Brand, Isoré, and Tripier (2019), and

Arellano, Bai, and Kehoe (forthcoming). More specifically, our framework closely follows

Christiano, Motto, and Rostagno (2014), who investigate the real role of uncertainty shocks

in the context of the financial accelerator model initially developed by Bernanke, Gertler,

and Gilchrist (1999). Note, however, that the severity of agency problems (i.e., monitoring

costs) remains unchanged over time within their framework. Levin, Natalucci, and Zakra-

jsek (2004), and more recently, Lindé, Smets, and Wouters (2016) and Fuentes-Albero (2018)

make it time-varying without, however, investigating the macroeconomic implications of un-

certainty shocks, and the role of expectation effects of regime shifts in financial frictions in

shaping the macroeconomic outcomes.

Our paper is also related to an increasing literature investigating the importance of expec-

tation effects in regime shifts in a Markov-switching framework. This concept was originally

defined by Liu, Waggoner, and Zha (2009) in the context of regime changes in monetary

policy, and then have been extensively studied thereafter. Bianchi (2013) considers “beliefs

counterfactuals” to quantify the importance of expectation effects in business cycle fluctua-

tions. Foerster (2016) distinguishes the expectation effects of regime switching in the inflation

target from those in the inflation response.6 Bianchi and Ilut (2017) allow for monetary/fiscal

policy mix changes. We extend this concept and apply it for regime shifts in the degree of

financial frictions. Interestingly, the expectation effects embedded in our model share some

features with the anticipation effect described by He and Krishnamurthy (forthcoming) in

the context of a model with occasionally binding financial constraints. In their model, fi-

nancial constraints have effects on the equilibrium even when they are not binding (which

corresponds to the tranquil regime in our model) if agents anticipate that they may bind in

the future (which corresponds to the realization of the stress regime in our model).

From a methodological standpoint, this paper is related to an increasing literature dealing

with estimation and simulation of DSGE models in which stochastic volatilities and structural

6It is worth mentioning that Bianchi and Melosi (2016) extend this framework to consider Bayesian learning

by rational agents.
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parameters are allowed to follow Markov-switching processes. This literature includes, among

others, Liu, Waggoner, and Zha (2011), Bianchi (2013), Davig and Doh (2014), Lhuissier and

Zabelina (2015), Bianchi and Melosi (2017), and Lhuissier (2018). The standard approach

for inference of MS-DSGE models employed by all of these papers is to build the state-space

representation of the MS-DSGE models adapted from the the standard Kim and Nelson

(1999)’s filter. In contrast, our approach dispenses with such a filter as inference is directly

done by minimizing the gap between theoretical and empirical impulse response functions.

III. Evidence of time variation in the effects of uncertainty shocks

This section documents changes in the effects of uncertainty shocks on aggregate activity

over time by employing a Markov-switching framework.

III.1. Markov-switching Structural Bayesian VARs. Following Hamilton (1989), Sims

and Zha (2006), and Sims, Waggoner, and Zha (2008), we employ a Markov-switching

Bayesian structural VAR model of the following form:

y′tA(sct) =

ρ∑
i=1

y′t−iAi(s
c
t) + C(sct) + ε′tΞ

−1(svt ), t = 1, . . . , T, (1)

where yt is defined as yt ≡ [gdpt, vixt, spt]
′; gdpt is the logarithm of U.S. real GDP; vixt is the

VIX index, a proxy for uncertainty; and spt is the BAA-AAA credit spread. Data sources

are presented in Appendix A. The overall sample period is 1962:Q3 to 2018:Q2. We set the

lag order to ρ = 2. Our parsimonious specification is justified by the fact that it becomes

quickly challenging to estimate Bayesian MS-SVAR models as the number of observables and

lags grows. Note also that this is in line with the literature that allows for time-varying

parameters in VARs (e.g., Primiceri, 2005; Cogley and Sargent, 2005; Bianchi and Melosi,

2017).

We assume a two-regimes process governing equation coefficients and constants (sct), and

a three-regimes process governing disturbance variances (svt ). The regimes evolve according

to two transition matrices as follows:

Qc =

 qc1,1 qc1,2

qc2,1 qc2,2

 , and Qv =


qv1,1 (1− qv2,2)/2 0

1− qv1,1 qv2,2 1− qv3,3
0 (1− qv2,2)/2 qv3,3

 . (2)
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The restricted transition matrix Qv implies that when we are in regime j, we can only move

to regime j− 1 or j+ 1. Sims, Waggoner, and Zha (2008) argue that such a restriction tends

to fit the macroeconomic data better.

We assume that εt follows the following distribution:

p(εt) = normal(εt|0n, In), (3)

where 0n denotes an n × 1 vector of zeros, In denotes the n × n identity matrix, and

normal(x|µ,Σ) denotes the multivariate normal distribution of x with mean µ and vari-

ance Σ. Finally, T is the sample size; A(st) is a n-dimensional invertible matrix under the

regime st; Ai(st) is a n-dimensional matrix that contains the coefficients at the lag i and the

regime st; C(st) contains the constant terms; and Ξ(st) is a n-dimensional diagonal matrix.

Following Sims and Zha (1998), we exploit the idea of a Litterman’s random-walk prior to

structural-form parameters.7 Appendix B provides the details techniques for the Sims and

Zha (1998) prior.

Finally, the prior duration of each regime is about five quarters. We have also used other

prior duration and the main conclusions remain unchanged.

III.2. Identification. We identify uncertainty shocks by combining two kinds of restriction.

The first is based on traditional sign restrictions on the impulse response functions, as de-

veloped by Faust (1998), Canova and Nicolo (2002), and Uhlig (2005). We impose that

an uncertainty shock induces a simultaneous rise in the VIX index and credit spread. The

argument for this restriction is based on the idea that increases in financial uncertainty is fre-

quently associated with significant increases in credit spreads, as shown in Stock and Watson

(2012). We also assume that innovations to uncertainty cause a fall in output. This restric-

tion is motivated by the large theoretical literature views that uncertainty has recessionary

effects. See Bloom (2014) for a survey of the literature.

7Regarding the Sims and Zha (1998) prior, the hyperparameters are defined as follows: µ1 = 1.00 (overall

tightness of the random walk prior); µ2 = 1.00 (relative tightness of the random walk prior on the lagged

parameters); µ3 = 0.1 (relative tightness of the random walk prior on the constant term); µ4 = 1.0 (erratic

sampling effects on lag coefficients); µ5 = 0.0 (belief about unit roots); and µ6 = 0.0 (belief in cointegration

relationships). To match the usual interpretation of Litterman’s prior on the reduced form, we drop the two

kinds of true dummy observations (µ5 and µ6) introduced by Sims and Zha (1998). See also Doan, Litterman,

and Sims (1984) and Sims (1993).
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The above restriction is not sufficient to guarantee pure uncertainty shocks due to the high

degree of comovement between the uncertainty proxy and credit spread. It might be possible

that shocks originating from financial sector are present into uncertainty shocks. The second

kind of restriction allows us to completely disentangle between these two types of shock.

We use a criterion that impose a restriction on forecasting error variance decompositions

(FEVD). More specifically, uncertainty shock should at least explain 50 percent of variations

in the VIX index. This kind of restriction is in line with Caldara, Fuentes-Albero, Gilchrist,

and Zakrajek (2016) who identify uncertainty shocks as innovations explaining the maximum

amount of variability in an uncertainty indicator to disentangle them form financial shocks.

By combining the appeal of FEVD-restrictions approach with the advantages of sign restric-

tions, we are able to isolate fluctuations in uncertainty and its effects on economic activity.

III.3. Empirical results. In this section, we report our main empirical results produced

by the MS-SVAR model. First, we present, in Section III.3.1, the posterior distribution of

the estimated model. We then report, in Section III.3.2, impulse responses of endogenous

variables to uncertainty shock.

The results shown are based on 10 million draws with the Gibbs sampling procedure (see

Appendix B for details). We discard the first 1, 000, 000 draws as burn-in, then keep every

100th draw.

III.3.1. Posterior distribution. In this section, we present key results produced from the

model. Figures 1 and 2 show the probabilities of being in a specific regime for each process

(svt and sct) over time. The probabilities are smoothed in the sense of Kim (1994); i.e., full

sample information is used in getting the regime probabilities at each date.

When looking at the process in which equation coefficients are allowed to change (see sct

shown in Figure 1), it is apparent that Regime 1 (sct = 1) was prevailing during episodes of

high inflationary pressure in the 1970s and 1980s, and dominant during the age of the 9/11

attacks, Dot-com bubble, and corporate scandals. This regime was also in place during the

financial crisis originated by subprime mortgages, as well as during the European debt crisis.

We thus label this regime as the distress regime. All of the above-mentioned sub-periods,

captured by this regime, contain the same similarities, namely major disruption in financial

markets, macroeconomic imbalances, and heightened uncertainty. Regime 2 has prevailed for
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Figure 1. Sample period: 1962.Q4-2018.Q2. State Probabilities (Two-State

Structural Coefficients).

the remaining years of the sample, characterized by episodes of tranquility. We label it as

the tranquil regime. Regarding the process governing the structural disturbance variances,

svt , the model clearly captures three distinct regimes of volatility: a low-, high-, and extreme-

volatility regime, as shown in Table 1.8 Looking at Figure 2, the high-volatility regime (i.e.,

Regime 3) corresponds clearly to the pre-Great Moderation period, where the size of shock

variances in output is relatively four times larger than those experienced in the low-volatility

regime (i.e., Regime 1). The higher degree of volatility in the pre-1980s period corroborates,

for example, with Kim and Nelson (1999). Finally, the extreme-volatility regime (i.e., Regime

2) identifies exceptional events, like the beginning of the Great Recession in 2008.

Table 1. Relative shock standard deviations across regimes.

Production gdp Uncertainty vix Financial sp

st = 1 1.0000
[1.0000;1.0000]

1.0000
[1.0000;1.0000]

1.0000
[1.0000;1.0000]

st = 2 4.5043
[2.0673;7.2627]

7.4577
[3.2094;31.0974]

9.1667
[5.3735;13.8848]

st = 3 4.6611
[3.4921;6.0990]

1.7173
[1.0957;2.7058]

0.9002
[0.5183;1.3942]

8Following Sims and Zha (2006), we normalize the size of shock variances to unity in Regime 1, svt = 1.
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Figure 2. Sample period: 1962.Q4-2018.Q2. State Probabilities (Three-State

Disturbance Variances).

Tables 2 and 3 report estimated transition matrices at the posterior mode, with 68%

probability intervals in brackets, for Markov-switching processes Qv and Qc, respectively.

Looking at the sct process, the distress regime (qc11 = 0.8969) is slightly less persistent (an

average duration of about 9 quarters) than the tranquil regime (qc22 = 0.9324) which covers

most of the sample with an average duration over 15 quarters. Looking at the svt process,

Regimes 1 and 3 are unsurprisingly the most persistent, with qv11 = 0.9432 and qv33 = 0.9846,

respectively. Regime 2, has a very short-lived duration of about 3 quarters. The tight interval

probabilities reinforce the credibility of the estimated mode values.

In summary, our results suggest that the economy has experienced shocks whose the size

change over time. Interestingly, the behavior of the economy — characterized by the sys-

tematic part of the model, i.e., equation coefficients — is different in distress periods than in

tranquil periods. The objective of the next section is then to investigate the extent at which



REGIME-DEPENDENT EFFECTS OF UNCERTAINTY SHOCKS 12

Table 2. Estimated transition matrix [VAR disturbances]

svt = 1 svt = 2 svt = 3

svt = 1 0.9432
[0.9153;0.9709]

0.1828
[0.0568;0.1727]

0.0000
[0.0000;0.0000]

svt = 2 0.0568
[0.0291;0.0847]

0.6345
[0.6546;0.8864]

0.0154
[0.0211;0.1056]

svt = 3 0.0000
[0.0000;0.0000]

0.1828
[0.0568;0.1727]

0.9846
[0.8944;0.9789]

Table 3. Estimated transition matrix [VAR coefficients]

sct = 1 sct = 2

sct = 1 0.8969
[0.4522;0.8752]

0.0676
[0.0114;0.1088]

sct = 2 0.1031
[0.1248;0.5477]

0.9324
[0.8912;0.9886]

economic dynamics differ across these two distinct periods by exploring the way endogenous

variables respond to uncertainty shocks.

III.3.2. Regime-dependent dynamic effects of uncertainty shocks. We illustrate possible dif-

ferences in dynamics across the two regimes of the process governing equation coefficients,

sct , by examining the response of the rest of the economy to a pure disturbance in uncertainty

(“one-time uncertainty shock”).9

Figure 3 reports the impulse responses of endogenous variables across the two regimes.

The first column shows the responses in the tranquil regime, while the responses in the stress

regime are displayed in the second column. All of these panels display the deviation in percent

for the series entered in log-levels (output), whereas it displays the deviation in percent points

(p.p) for the VIX index and credit spread. The third column shows the differences between

impulse responses of the two regimes. In any column, the dotted lines represent the median,

with the 16th and 84th percentile displayed in solid lines. For comparability across regimes,

9Here, we assume that a particular regime will last in the wake of the shock, although agents take into

account the possibility of regime shifts. Alternatively, we could have employed the generalized impulse-

response function (GIRF) developed by Koop, Pesaran, and Potter (1996), and transposed to MS-SVAR

models by Karamé (2015). GIRF makes allowance for the dependence on initial conditions, future shocks,

and future regimes.
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Figure 3. Impulse-response functions to uncertainty shock under both

regimes obtained from the identified MS-SVAR model. The first and second

column report impulse responses of endogenous variables under distress and

tranquil regimes, respectively. The last column displays the difference between

the two regimes. In each case, the median is reported in dotted line and the

68% error bands in solid lines.

our uncertainty shock is scaled to induce a 10 percentage points immediate increase in the

VIX index.
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Looking at this figure, the responses of our measure of aggregate activity do vary much over

time, indicating that the differences among the two regimes in the coefficients of the system of

equations are very large. After a positive innovation in our uncertainty measure that causes

a 10 percentage points increase in the VIX index, the output falls slowly and moderately in

the tranquil regime, but falls quickly and considerably in the distress regime, until reaching

its minimum after 3 quarters. These differences seem to be statistically significant when

taking into account the 68 percent probability intervals (right-top panel); error bands of the

differences lie exclusively within the negative region over the first 8 quarters.

Interestingly, the response of credit spread is much larger in the distress regime, indicating

credit costs for firms are relatively high. Once again, error bands reinforce these results. We

thus might say that the amplification effects on output occur primarily through changes in

credit spreads.

We investigate this intuition in the next section through inference of a MS-DSGE model by

using the regime-dependent impulse responses obtained from the identified MS-SVAR model.

IV. A structural interpretation

This section provides a structural interpretation of the empirical results described in section

III. Before discussing the estimation results in Section IV.3, we first present our micro-

founded model in Section IV.1, as well as the solving method in Section IV.2. The full

general equilibrium model is provided in Appendix C.

IV.1. A Markov-switching DSGE Model with financial frictions. In previous sec-

tions, we have shown that there are important differences in the transmission mechanism of

uncertainty shocks between tranquil and distress regimes. In order to provide a structural

interpretation of these changes, we need to develop a microfounded business cycle model

whose key parameters are allowed to change across regimes. We, therefore, develop a DSGE

model with a two-states Markov-switching process, χt, that evolves according to the transi-

tion probabilities pij, with i, j ∈ {1, 2}.

The structure of the model is based on the Smets and Wouters (2007)’s model with Fi-

nancial Frictions (hence after SWFF) developed by Del Negro, Giannoni, and Schorfheide

(2015), which is a log-linearized version of the medium scale DSGE model with real and

nominal frictions originally developed by Christiano, Eichenbaum, and Evans (2005), Smets
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and Wouters (2007), and Christiano, Motto, and Rostagno (2014). In what follows, we briefly

summarize the key ideas of the model.

Sticky nominal prices and wages adjust following a Calvo mechanism with probability 1−ζp
and 1 − ζw, respectively, and with partial indexation ιp and ιw, respectively. The nominal

interest rate is set according to a Taylor rule, where the nominal interest rate responds to

inflation (ψ1), to output gap (ψ2), and to its lagged value (ρR). The model incorporates

fixed cost (Φp), a variable capital utilisation (ψ), and costs of adjusting the capital stock

(S ′′) in the production sector. Households’ preferences are characterized by habit formation

in consumption, governed by the parameter h.

The model includes also the Bernanke, Gertler, and Gilchrist (1999)’s financial accelerator

mechanism, allowing us to introduce both financial frictions and uncertainty shocks into

the model. Entrepreneurs receive funds from households’ deposits to banks and uses it,

together with personal wealth, to purchase physical capital, which is rented to intermediate

goods producers. Entrepreneurs experience idiosyncratic productivity shocks that affect their

ability to manage capital. When their revenue is too low, they are not able to pay back bank

loans. Banks protect themselves against default risk by charging a premium over the deposit

rate. This premium varies exogenously due to changes in the dispersion of entrepreneurs’

idiosyncratic productivity, captured by σω,t, and endogenously as a function of the balance

sheet of entrepreneurs, through the elasticity parameter ζsp,b. These exogenous changes

follow an AR(1) process, with the persistence parameter ρσω , and the shock variance σσω . We

interpret these exogenous changes as the theoretical counterpart of the structural uncertainty

shocks identified in the empirical MS-SVAR.

To maintain model tractability, we do not allow all structural parameters to change over

time. We believe that there are three set of candidates for explaining the differences in

economic dynamics between both regimes. The first is related to the capital expenditures,

namely adjustment costs of investment, S ′′. The second comes from the financial frictions

in the economy, through the elasticity of premium to net worth, ζsp,b, and the persistence of

uncertainty shocks, ρσω . The third is related to monetary policy rule, i.e., the response of

nominal interest rate to inflation (ψ1) and to output gap (ψ2). The monetary authority might

be tempted to change its behavior depending on the state of the economy. The remaining

parameters remain invariant with time. The time-invariance shock variance, σσω , is justified
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by our empirical results that show important changes in the transmission mechanism for a

given constant shock variance.

IV.2. Solving MS-DSGE model. We proceed in several steps to implement our regime-

switching model following Bianchi (2013) and Lhuissier and Zabelina (2015). First, because

the economy exhibits a trend, we stationarize variables by their corresponding trend. Second,

we compute the steady state of the stationary model and then we log-linearize it around its

steady state. Third, we add the index χt, the exogenous first-order Markov process, to the

model. The compact form of the model becomes as follows:

A(χt)ft = B(χt)ft−1 + Ψ(χt)εt + Π(χt)ηt, (4)

where ft is the vector of endogenous components, εt is a vector of exogenous shocks, and ηt

is a vector of expectational errors.

We employ the solution algorithm based on the Mean Square Stable (MSS) concept pro-

posed by Farmer, Waggoner, and Zha (2009), Farmer, Waggoner, and Zha (2011), and Cho

(2016). Such algorithms allow agents to take into account the possibility of future regime

shifts when forming expectations. For efficiency and speed reasons, we use the Cho (2016)’s

algorithm, which uses a forward method.

IV.3. Empirical Results. This section provides the main quantitative results from the

estimated MS-DSGE model. First, we present our estimation strategy in Section IV.3.1.

Second, we report the estimates of structural parameters in Section IV.3.2. Third, we present,

in Section IV.3.3, the impulse response functions to uncertainty shock.

IV.3.1. Estimation strategy. Our estimation strategy is analogous to the impulse response

matching approach used by Rotemberg and Woodford (1997) and Christiano, Eichenbaum,

and Evans (2005), except that we are estimating the parameters to fit our regime-dependent

impulse responses from a MS-SVAR, as opposed to impulse responses from a constant-

parameters SVAR.10 Our empirical analysis matches the estimated impulse responses func-

tions of output and credit spread, but we do not include the VIX index, which is not ob-

servable in the theoretical model. To the best of our knowledge, Basu and Bundick (2017)

10We thank Mathias Trabandt for sharing computer codes used in Christiano, Trabandt, and Walentin

(2010) on inference of constant DSGE models with the standard impulse response matching approach. We

adapt their codes into Markov-switching environment.
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are the first to define the VIX index in a DSGE model, but this requires a third-order ap-

proximation to the model policy functions. At this stage, there is no efficient estimation

algorithm to allow high-order approximations for MS-DSGE models. Nevertheless, it should

be stressed that Foerster, Rubio-Ramı́rez, Waggoner, and Zha (2016) attempt to fill part of

this gap using perturbation methods. However, their solution methods is not enough fast

and accurate to be used in an estimation algorithm.

Let ξ̃ is a N × 1 vector, which stack the contemporaneous and 15 lagged responses to

each of two endogenous variables to the uncertainty shock. The number of elements in ξ̃ is

equal to , 2 (i.e., the number of regimes) times 2 (i.e., the number of variables) times 16

(i.e., the horizon) = 64 elements. Let ξ(θ) denotes the mapping from θ to the MS-DSGE

model impulse response functions, with θ is a vector containing all estimated parameters.

The likelihood function of the data, ξ̃ is defined as as function of θ:

f(ξ̃|θ, V̄ ) =

(
1

2π

)N
2

|V̄ −
1
2 | ×

[
−1

2
(ξ̃ − ξ(θ)′)V̄ −1(ξ̃ − ξ(θ))

]
, (5)

where V̄ is a diagonal matrix with the sample variances of the ξ̃’s along the diagonal. Con-

ditional on ξ̃ and V̄ , the Bayesian posterior of θ is as follows:

f
(
θ, V̄

)
∝ f(ξ̃|θ, V̄ )× f(θ), (6)

where f(θ) denotes the priors on θ.

The strategy of estimation begins by maximizing (6) using the CSMINWEL program, the

optimization routine developed by Christopher A. Sims. Once at the posterior mode, we

can start a Markov Chain Monte Carlo method to sample the posterior distribution. More

specifically, we employ the Random-walk Metropolis Hasting procedure to generate draws

from the joint posterior distribution of the MS-DSGE model. The results shown in the paper

is based on 50,000 draws. We discard the first 10 percent draws as burn-in, and every 10th

draws is retained.

IV.3.2. Estimates of key parameters. In order to keep the estimation procedure tractable,

we calibrate several parameters. Most of them are set along the line of those estimated by

Del Negro, Giannoni, and Schorfheide (2015). Table 4 summarizes it. Note also that the

transition probabilities (pij) are calibrated so that to be equal to those from the transition
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matrixQc, which governs regime changes in the equation coefficients (and thus in transmission

mechanism) of the estimated MS-SVAR model in Section III.

Table 4. Calibration of structural parameters.

α Capital share 0.1687 π∗ SS quarterly inflation 0.5465

ζp Calvo prices 0.7467 σc elasticity utility 1.5073

ιp Price indexation 0.2684 ρR Taylor rule smoothing 0.8519

Υ technological progress 1.0000 F (ω) default rate 0.0300

h Consumption habit 0.4656 sp∗ SS quarterly spread 1.1791

νl elasticity labor 1.0647 γ∗ survival rate 0.9900

ζw Calvo wages 0.7922 γ SS quarterly growth rate 0.4010

ιw Wage indexation 0.5729 β Discount factor 0.7420

Φp Fixed costs 4.5260 p11 prob. staying in Regime 1 0.8969

ψ Elas. capital utilization costs 0.1800 p22 prob. staying in Regime 2 0.9324

Note: Calibration is based on the estimated parameters in Del Negro, Giannoni,

and Schorfheide (2015), except for transition matrix parameters, which are those ob-

tained, at the mode, from the identified MS-SVAR model.

Table 5 reports the specific distribution, the mean and the standard deviation for each es-

timated parameter. Most of the prior distributions for the parameters follow those in Del

Negro, Giannoni, and Schorfheide (2015). The prior for costs of investment adjustment fol-

lows a gamma distribution with the mean 1.00 and the standard deviation 0.75. Regarding

monetary policy parameters, the prior for the responses to inflation follows a normal distri-

bution with the mean 1.00 and the standard deviation 0.20, and the prior for the responses

to output gap has a gamma distribution with the mean 0.12 and the standard deviation

0.10. The prior for the parameters of financial contract is rather dispersed and cover a large

parameter space. We employ a uniform distribution defined over [0; 0.10]. The prior distri-

butions of uncertainty shock process is weakly informative. We use a beta distribution for

the persistence of the shock with the mean 0.75 and standard deviation 0.15. Regarding the

shock variance, we impose an inverted gamma distribution, with hyper-parameters, ν and s,

equal to 0.05 and 20.00, respectively.11

11The inverted gamma distribution is as follows pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2

.
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Table 5. Prior and posterior distribution.

Prior Posterior

Coefficient Description Density para(1) para(2) Mode [5; 95]

S′′(k = 1) Investment adjustment costs G 0.75 0.50 0.2439 0.0751 0.5145

S′′(k = 2) Investment adjustment costs G 0.75 0.50 0.7638 0.1831 1.6440

φ1(k = 1) Taylor rule, inflation N 1.70 0.20 1.7099 1.3775 2.0690

φ1(k = 2) Taylor rule, inflation N 1.70 0.20 1.6960 1.3751 2.0394

φ2(k = 1) Taylor rule, output gap G 0.12 0.10 0.0203 0.0027 0.0459

φ2(k = 2) Taylor rule, output gap G 0.12 0.10 0.0705 0.0130 0.1709

ζsp,b(k = 1) Elas. financial contract U 0.00 0.10 0.0501 0.0238 0.0896

ζsp,b(k = 2) Elas. financial contract U 0.00 0.10 0.0027 0.0008 0.0057

ρσω
(k = 1) Persistence uncertainty shock B 0.75 0.15 0.9270 0.8665 0.9763

ρσω
(k = 2) Persistence uncertainty shock B 0.75 0.15 0.7957 0.7331 0.8477

σσω Uncertainty shock Inv-G 0.04 20.0 0.0399 0.0327 0.0496

Note: N stands for Normal, B Beta, G for Gamma, Inv-G for Inverted-Gamma and U for Uni-

form distributions. The 5 percent and 95 percent demarcate the bounds of the 90 percent prob-

ability interval. Para(1) and Para(2) correspond to the means and standard deviations for the

normal, beta and gamma distributions, to ν and s for the inverted-gamma distribution, where

pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
, and to the lower and upper bound for the uniform distribution.

The group of estimated parameters is stacked as follows:

θ = [S ′′(k), ψ1(k), ψ2(k), ζsp,b(k), ρσω(k), σσω ] , with k = {1, 2}. (7)

The last three columns of Table 5 report the posterior mode with the 90 percent proba-

bility interval for each structural parameter. Clearly, none of capital and monetary policy

parameters seems to account for the differences in the dynamics between the two regimes.

The estimates for ψ1(k), under both regimes, indicate that the posterior mode is closely

similar to the mean of the prior, meaning our impulse responses contain little information

about the response of monetary authority to inflation. The estimates for ψ2(k), the monetary

response to output gap, are relatively small for each regime, where ψ2(k = 1) = 0.02 and

ψ2(k = 2) = 0.07 at the mode. Note also that their 90 percent probability intervals overlap,

meaning that there are no significant differences between those parameters across the two

regimes. The estimates for S ′′(k) are about 0.24 and 0.76 in Regimes 1 and 2, respectively,



REGIME-DEPENDENT EFFECTS OF UNCERTAINTY SHOCKS 20

slightly lower than those reported in the literature. Once again, the 90 percent probability

intervals overlap, meaning that their differences do not appear to be fairly significant.

By contrast, the parameter of the financial contract, ζsp,b(k), differs considerably between

the two regimes. At the posterior mode, its estimate is close to zero in the tranquil regime, but

turns out to be relatively high in the distress regime, for a value of 0.0501. The fact that the

probability intervals do not overlap reinforces our results. It follows that, in distress periods,

linkages between the quality of borrowers balance sheets and their access to external finance

are strengthened, implying thus a more powerful financial accelerator mechanism. More

details about this mechanism is provided in the next section. Clearly, this finding shows that

the macroeconomic impact of uncertainty shocks depend on the degree of financial frictions

in the economy.

We can easily recover the values of monitoring costs, the deep parameter of the financial

accelerator, from ζsp,b(k), the sensitivity of the external finance premium to leverage ratio.

Under Regime 1 (i.e., distress regime), lenders pay monitoring costs which account for about 9

percent (at the mode) of the realized gross payoff to the firm’s capital to observe an individual

borrower’s realized return. These costs are much higher than those observed in Regime 2

(i.e., tranquil regime), i.e., about 1 percent (at the mode) of the realized gross payoff to the

firm’s capital.

Recently, Fuentes-Albero (2018) emphasizes the crucial role played by time-varying moni-

toring costs in shaping the business cycles. Our approach is, however, substantially different.

Fuentes-Albero (2018) considers, in some way, shocks to the monitoring cost which generates

the impulsion at the origin of business cycles, while in our approach, changes in the monitor-

ing cost represent the amplification and propagation mechanisms of uncertainty shocks. In

this respect, the Lindé, Smets, and Wouters (2016) specification is closest to our approach.

They estimate, with full information methods, a DSGE model with financial frictions à la

Bernanke, Gertler, and Gilchrist (1999) in which the monitoring cost is allowed to change

according to a Markov-switching process. Interestingly, they capture changes in the degree

of the financial frictions, with repeated changes in the monitoring costs between a low (2.90

percent) and high (8.40 percent) value over time. These estimated values corroborate with

our finding, except that the times of monitoring cost changes are slightly different. These

differences can be explained by two main reasons. First, they estimate a MS-DSGE with



REGIME-DEPENDENT EFFECTS OF UNCERTAINTY SHOCKS 21

full information methods — i.e., key macroeconomic and financial variables are directly ob-

servable in the model — while we estimate our MS-DSGE by the impulse-response matching

approach. Second, our MS-SVAR model takes properly into account heteroskedasticity of

U.S. macroeconomic disturbances, while they do not. Indeed, Sims (2001), and more recently

Lhuissier and Zabelina (2015), have shown the importance of capturing heteroskedasticity

before allowing changes in economic dynamics in order to avoid misleading results. In Lindé,

Smets, and Wouters (2016), only the monitoring cost parameter is allowed to change over

time while shock variances remain constant. Our paper overcomes this issue by allowing both

equation coefficients and shock variances to change over time independently.12

IV.3.3. Impulse responses. Figure 4 reports, in red line, the impulse responses of endogenous

variables to the uncertainty shock obtained from the MS-DSGE model. The first column

represents the responses under the distress regime, while the second column represents those

in the tranquil regime. For comparison purposes, we also present the 68 percent probability

intervals of the MS-SVAR model-implied responses. A number of results are worth empha-

sizing here. First, the model performs well at accounting for the dynamic responses of the

economy to a uncertainty shock. All the DSGE model-implied responses lie within the 68

percent probability intervals computed from the MS-SVAR model. From a qualitative point

of view, the responses of the output and the credit spread in the tranquil regime share some

common features with the responses in the distress regime. Credit spread and output move

in opposite directions; output declines progressively, while credit spread rises immediately

and then begins to return its pre-shock level steadily.

The transmission mechanism is straightforward. The uncertainty shock directly alters the

degree of risk associated with the asymmetric information between lenders and entrepreneurs

who borrow external funds to produce physical capital goods. It moves the dispersion of en-

trepreneurs’ idiosyncratic productivity. With imperfect financial markets, this shock implies

higher agency costs since more entrepreneurs draw low levels of productivity and are then

unable to reimburse their debts. Then, a positive uncertainty shock increases both the risk

of default and the cost of external funds which lead to a fall in the economic activity of

12Interestingly, in Lindé, Smets, and Wouters (2016), the times of changes in the monitoring cost param-

eter coincide remarkably well with the times of changes of the high-volatility regime reported in Figure 2,

suggesting a biased estimation of their regime-dependent monitoring cost.
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Figure 4. Impulse-response functions to a uncertainty shock. For each regime

(i.e., each column), the median responses from the identified MS-BVAR model

is reported in dotted blue line and the 68% error bands in solid blue lines. The

red line reports the responses (at the mode) from the MS-DSGE model.

entrepreneurs transmitted to the overall economy in general equilibrium through an increase

of the credit spread and a fall in investment and production. Say it differently, financial fric-

tions act as the main mechanism through which changes in uncertainty affect macroeconomic

variables.

Furthermore, the model succeeds in accounting for the differences in the responses of

endogenous variables across the two regimes. Indeed, there is a notable change in the way
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both output and credit spread respond to the shock. Concerning the changes in the impulse

responses between the two regimes, the responses under the distress regime are remarkably

amplified compared to those in the tranquil regime. Under these circumstances, financial

frictions act as an amplification mechanism. Note also that we observe a stronger recovery

in real activity in bad times.

This stronger effect of uncertainty in distress periods can be explained as follows. The

elasticity parameter of financial contract, ζsp,b, relates our measure of the external finance

premium (i.e., credit spread) to the firm’s net worth. Under high stress, ζsp,b(k = 1) = 0.0501,

the premium becomes much more sensitive to a firm’s net worth, compared to tranquil periods

(ζsp,b(k = 2) = 0.0027). In this context, a uncertainty shock causes larger credit spread

increases, and therefore, larger and long-lasting negative effects in economic activity. In

contrast, when stress is low, the economy is better capable of absorbing the coming economic

shocks. As a result, the macroeconomic effects are less pronounced.

IV.4. Expectation effects of regime shifts in financial conditions. In the previous

section, we have illustrated the role of financial frictions in propagating uncertainty shocks

by comparing economic outcomes of two possible regimes: one regime with a high elasticity

of the credit spread to the net worth position, and another regime with a low-degree of

financial frictions, i.e., a low elasticity in financial contract. Results were not only based

on the estimated structural parameters of each regime, but also on the transition matrix

used by agents when forming their expectations. In this section, we gauge what would have

happened if agents had considered different probabilities of moving across regimes. Such a

counterfactual is interesting to execute because it allows assessing the role of expectation

effects of regime switching in financial conditions.

Figure 5 displays the impulse responses of variables following a uncertainty shock when the

probability of staying in the same regime varies between 0.00 to 1.00. Each column represents

the response of variables under a specific regime. When considering pii = 1, agents believe

that the regime in which they are will last indefinitely. Inversely, the more pii declines, the

more agents believe that the economy will move to the other regime in the next period.

Clearly, the expectation effects play an important role in shaping the dynamic behavior of

macroeconomic variables. As one can see, if agents take into account the effects of possible

changes in future financial conditions, macroeconomic outcomes are remarkably altered. The
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Figure 5. Impulse-response functions to uncertainty shock as a function of

the probability of staying in the same regime.

more are agents optimistic about future financial conditions (i.e., gradual moves toward

pii = 0 in the left column (Regime 1) or pii = 1 in the right column (Regime 2)), the more

macroeconomic effects are dampened. Reciprocally, pessimism of agents about financial

conditions (i.e., gradual moves toward pii = 1 in the right column or pii = 0 in the left

column) amplify the effects of uncertainty shocks. Quantitatively, the expectation effects

appear to be bigger under the distress regime, where the output effects of the shock can be

divided by three. The role of expectation effects of regime switching in the degree of financial

frictions appears to be important in amplifying or mitigating the propagation of uncertainty
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shocks. Therefore, these expectation effects are an important component of the financial

accelerator mechanism.

V. Conclusion

Why are the real effects of uncertainty shocks so different over time? Our results point

to a key role for changes in the degree of financial frictions; the financial accelerator is

strengthened in distress periods. Under these circumstances, agents’ expectations around

the level of frictions can alter macroeconomic outcomes. Optimistic expectations about

future financial conditions dampen contractionary effects of uncertainty shocks on aggregate

activity. Conversely, pessimistic expectations amplify their effects.

These conclusions have important implications for the conduct of monetary and macro-

prudential policies. For example, the bulk of the evidence suggests that these policies can

reduce the frequency and severity of financial disruptions, and thus the likelihood of observing

a regime characterized by a high degree of financial frictions. In this context, if policymakers

communicate to and persuade, in a clear way, agents that such policies are around the corner,

then they can, even before implementing them, dampen the adverse effects of uncertainty

shocks. The ability of policymakers to manage agents’ expectations reveals to be crucial in

shaping business cycle fluctuations.
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Appendix A. Data

All data are organized quarterly from the second Quarter of 1962 to the second Quarter

of 2018. Most data comes from Federal Reserve Economic Database (FRED).

• gdpt: output is the real GDP (GDPC1).

• vixt: uncertainty is the Chicago Board of Options Exchange Market Volatility Index.

From 1963 to 2009, we use the constructed index by Bloom (2009). Then, from 2009,

we follow Stock and Watson (2012) and take a quarterly average of daily VIX.

• spt: credit spread is constructed as the difference between BAA corporate bond yields

(BAA) and AAA corporate bond yields (AAA).

For inference, we use the natural log of output. Our spread and uncertainty variables remain

unchanged.

Appendix B. Markov-switching Structural Bayesian VAR model

This section provides a detailed description of the Bayesian inference employed in this

paper. More specifically, we closely follow Sims, Waggoner, and Zha (2008).

B.1. The posterior. Before describing the posterior distribution, we introduce the following

notation: θ and q are vectors of parameters where θ contains all the parameters of the model

(except those of the transition matrix) and q = (qi,j) ∈ Rh2 . Yt = (y1, . . . , yt) ∈ (Rn)t are

observed data with n denoting the number of endogenous variables and St = (s0, . . . , st) ∈

H t+1 with H ∈ {1, . . . , h}.

The log-likelihood function, p(YT |θ, q), is combined with the prior density functions, p(θ, q),

to obtain the posterior density, p(θ, q|YT ) = p(θ, q)p(YT |θ, q).

B.1.1. The likelihood. Following Hamilton (1989), Sims and Zha (2006), and Sims, Wag-

goner, and Zha (2008), we employ a class of Markov-switching structural VAR models of the

following form:

y′tA(st) = x′tF (st) + ε′tΞ
−1(st), (8)

with x′t =
[
y′t−1 · · · y′t−ρ 1

]
and F (st) =

[
A1(st) · · · Aρ(st) C(st)

]′
.
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Let aj(k) be the jth column of A(k), fj(k) be the jth column of F (k), and ξj(k) be the

jth diagonal element of Ξ(k). The conditional likelihood function is as follows:

p(yt|st, Yt−1) = |A(st)|
n∏
j=1

|ξj(st)|exp

(
−ξ

2(st)

2
(y′taj(st)− x′tfj(st))

2

)
. (9)

To simplify the Gibbs-sampling procedure described in the next section, it is preferable to

rewrite the condition likelihood function with respect to free parameters from matrix A(st)

and F (st):

|A(st)|
n∏
j=1

|ξj(st)|exp

(
−ξ

2(st)

2
((y′t + x′tWj)Ujbj(st)− x′tVjgj(st))

2

)
, (10)

where aj(st) = Ujbj(k) and fj(st) = Vjgj −WjUjbj(k) is a result from the linear restrictions

Rj

[
aj fj

]′
= 0; and Uj and Vj are matrices with orthonormal columns and Wj is a matrix.

See Waggoner and Zha (2003) for further details.

The log likelihood function is given by

p(YT |θ, q) =
T∑
t

ln

{
h∑

st=1

p(yt|st, Yt−1)Pr [st|Yt−1]

}
, (11)

where

Pr [st = i|Yt−1] =
h∑
j=1

Pr [st = i, st−1 = j|Yt−1] (12)

=
h∑
j=1

Pr [st = i|st−1 = j] Pr [st−1 = j|Yt−1] . (13)

with qi,j = Pr [st = i|st−1 = j] are the transition probabilities from the h× h matrix Q

Q =


q1,1 · · · q1,j

...
. . .

...

qi,1 · · · qi,j

 (14)

The probability terms are updated as follows:

Pr [st = j|Yt] =Pr [st = j|Yt−1, yt] =
p(st = j, yt|Yt−1)

p(yt|Yt−1)
(15)

=
p(yt|st = j, Yt−1)Pr[st = j|Yt−1]∑h
j=1 p(yt|st = j, Yt−1)Pr[st = j|Yt−1]

. (16)
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B.1.2. The prior. Following Sims and Zha (1998), we exploit the idea of a Litterman’s

random-walk prior from structural-form parameters. Note that dummy observations are

not introduced as a component of the prior to keep in line with the original Litterman’s

prior. Using linear restrictions, the overall prior, p(θ, q), is given in the following way:

p(bj(k)) =normal(bj(k)|0, Σ̄bj), (17)

p(gj(k)) =normal(gj(k)|0, Σ̄gj), (18)

p(ξ2j (k)) =gamma(ξ2j (k)|ᾱj, β̄j), (19)

p(qj) =dirichlet(qi,j|α1,j, . . . , αk,j), (20)

where Σ̄bj , Σ̄ψj
, and Σ̄δj denotes the prior covariance matrices and ᾱj and β̄j are set to one,

allowing the standard deviations of shocks to have large values for some regimes.

The Gamma distribution is defined as follows:

gamma(x|α, β) =
1

Γ(α)
βαxα−1e−βx. (21)

Regarding the transition matrix, Q, suppose that qj = [q1,j, . . . , qh,j]
′. The prior, denoted

p(qj), follows a Dirichlet form as follows:

p(qj) =

(
Γ
(∑

i∈H αi,j
)∏

i∈H Γ(αi,j)

)
×
∏
i∈H

(qi,j)
αi,j−1, (22)

where Γ denotes the standard gamma function.

B.2. Gibbs-sampling. Following Kim and Nelson (1999) and Sims, Waggoner, and Zha

(2008), a Markov Chain Monte Carlo (MCMC) simulation method is employed to approx-

imate the joint posterior density, p(θ, q, ST |YT ). The advantage of using VARs is that con-

ditional distributions like p(ST |YT , θ, q), p(q|YT , ST , θ), and p(θ|YT , q, ST ) can be obtained in

order to exploit the idea of Gibbs-sampling by sampling alternatively from these conditional

posterior distributions.
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B.2.1. Conditional posterior densities, p(θ|YT , q, ST ). To simulate draws of θ ∈ {bj(k), gj(k), ξ2j }

from p(θ|YT , St, q), one can start to sample from the conditional posterior

p(bj(k)|yt, St, bi(k)) =

exp

(
−1

2
b′j(k)Σ̄−1bj bj(k)

)
×

∏
t∈{t:st=k}

[
|A(k)|exp

(
−ξ

2(st)

2
(y′taj(k)− x′tfj(k))2

)]
, (23)

using the Metropolis-Hastings (MH) algorithm. Then a multivariate normal distribution is

employed to draw gj(k):

p(gj(k)|yt, St) = normal(gj(k)|µ̃gj(k), Σ̃gj(k)). (24)

The computational details of the posterior mean vectors and covariance matrices are given

in Sims, Waggoner, and Zha (2008).

Disturbance variances ξ2j are simulated from a gamma distribution

p(ξ2j (k)|yt, St) = gamma(ξ2j (k)|α̃j(k), β̃j(k)), (25)

where α̃j(k) = ᾱj +
T2,k
2

and

β̃j(k) = β̄j +
1

2

∑
t∈{t:s2t=k}

(y′taj(st)− x′tfj(st))2, (26)

with T2,k denoting the number of elements in {t : s2t = k}.

B.2.2. Conditional posterior densities, p(ST |YT , θ, q). A multi-move Gibbs-sampling is em-

ployed to simulate St, t = 1, 2, ..., T . First, draw st according to

p(st|yt, St) =
∑

st+1∈H

p(st|YT , θ, q, st+1)p(st+1|YT , θ, q), (27)

where

p(st|Yt, θ, q, st+1) =
qst+1,stp(st|Yt, θ, q)
p(st+1|Yt, θ, q)

. (28)

Then, in order to generate st, one can use a uniform distribution between 0 and 1. If the

generated number is less than or equal to the calculated value of p(st|yt, St), we set st = 1.

Otherwise, st is set equal to 0.
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B.2.3. Conditional posterior densities, p(q|YT , ST , θ). The conditional posterior distribution

of qj is as follows:

p(qj|Yt, St) =
h∏
i=1

(qi,j)
ni,j+βi,j−1, (29)

where ni,j is the number of transitions from st−1 = j to st = i.

Appendix C. The Markov-switching DSGE Model

This section presents the Markov-switching structure of the DSGE model with financial

frictions, originally developed by Del Negro, Giannoni, and Schorfheide (2015).

The model describes the dynamics of the following set of variables: ct which stands for

consumption, lt for labor supply, Rt for the nominal interest rate, πt for inflation, it for the

level of investment, qkt for the value of capital in terms of consumption, rkt is the rental rate

of capital, ut for the utilization rate of physical capital, k̄ for the physical capital stock, kt for

the amount of physical capital effectively rented out to firms, wht for the household’s marginal

rate of substitution between consumption and labor, yt for the output, and yft for the output

in the flexible price/wage economy.

The log-linearized equilibrium conditions are given for the stationary variables and the

symbol ∗ denotes the steady state value of the variable. The structural parameters of the

economy impact the equilibrium conditions for the level of consumption,

ct =
(1− he−γ)
σc (1 + he−γ)

(Rt − Et [πt+1]) +
he−γ

(1 + he−γ)
ct−1 (30)

+
1

(1 + he−γ)
Et [ct+1] +

(σc − 1)

σc (1 + he−γ)

w∗l∗
c∗

(lt − Et [lt+1]) ,

for the labor input,

wht =
1

1− he−γ
(
ct − he−γct−1

)
+ νllt, (31)

for the level of investment,

qkt = S ′′(χt)e
2γ
(
1 + β

)(
it −

1

1 + β
it−1 −

β

1 + β
Et [it+1]

)
, (32)

for the utilization rate of physical capital,

1− ψ
ψ

rkt = ut, (33)
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given the production technology of the final good,

yt = Φp (αkt + (1− α) lt) , (34)

the law of motion of the physical capital stock kt,

kt =

(
1− i∗

k∗

)
kt−1 +

i∗

k∗
it, (35)

where i∗/k∗ is the steady-state ratio of investment to capital, and the expression for the

physical capital effectively used in production

kt = ut + kt. (36)

In these equations, the parameter σc captures the degree of relative risk aversion, h the degree

of habit persistence in the utility function, S ′′(χt) the second derivative of the adjustment

cost function, δ for the depreciation rate, β = βe(1−σc)γ the intertemporal discount rate,

σc the degree of relative risk aversion, ψ the costs of capital utilization, Φp the fixed cost of

production, α the income share of physical capital in the production function, νl the curvature

of the disutility of labor, and γ the steady-state growth rate.

The Phillips curves for prices (πt) and wages (wt) are, respectively,

πt =

(
1− ζpβ

)
(1− ζp)(

1 + ιpβ
)
ζp ((Φp − 1) εp + 1)

(wt + αlt − αkt) (37)

+
ιp

1 + ιpβ
πt−1 +

β

1 + ιpβ
Et [πt+1] ,

and

wt =

(
1− ζwβ

)
(1− ζw)(

1 + β
)
ζw ((λw − 1) εw + 1)

(
wht − wt

)
− 1 + ιwβ

1 + β
πt (38)

+
1

1 + β
(wt−1 + ιwπt−1) +

β

1 + β
Et [wt+1 + πt+1] ,

where the parameters ζp, ιp, εp, and λp are the Calvo parameter, the degree of indexation,

the curvature parameter in the aggregator for prices, and the mark-up, and ζw, ιw, εw, and

λw are the corresponding parameters for wages. The resource constraint is

yt =
c∗
y∗
ct +

i∗
y∗
it +

rk∗k∗
y∗

ut. (39)
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The policy rule of the monetary authority for the nominal interest rate is policy rule

Rt = ρRRt−1 + (1− ρR)
(
ψ1(χt) (πt − π∗t ) + ψ2(χt)

(
yt − yft

))
,

where ρR measures the persistence of the policy and the ψ. parameters the sensitivity of the

central bank to the fundamentals. In the model without financial frictions, the arbitrage

condition makes equal the return to capital and the riskless rate, that is

rk∗
rk∗ + (1− δ)

Et
[
rkt+1

]
+

1− δ
rk∗ + 1− δ

Et
[
qkt+1

]
− qkt = Rt − Et [πt+1] . (40)

This equation is no longer valid in the model in the context of financial frictions, and then

it is replaced by

Et

[
R̃k
t+1 −Rt

]
= ζsp,b(χt)

(
qkt + kt − nt

)
+ ζsp,σω(χt)σω,t, (41)

and

R̃k
t − πt =

rk∗
rk∗ + (1− δ)

rkt +
1− δ

rk∗ + (1− δ)
qkt − qkt−1, (42)

where R̃k
t+1 and Rt are the gross nominal return on capital for entrepreneurs and the nominal

interest rate in the economy, respectively, qkt the price of capital, nt the net worth of the

entrepreneurs, and σw,t the uncertainty shock. The law of motion of the entrepreneurial net

worth is:

nt = ζn,R̃k(χt)
(
R̃k
t − πt

)
− ζn,R(χt) (Rt−1 − πt) + ζn,qK(χt)

(
qkt−1 + kt−1

)
(43)

+ζn,n(χt)nt−1 −
ζn,σω(χt)

ζsp,σω(χt)
σw,t−1.

It is worth mentioning that ζ·,·(χt) are not structural parameters, but rather the combination

of several structural parameters and steady-state values of endogenous variables.

Finally, uncertainty shocks evolve according to

log σw,t = (1− ρσω(χt)) log σω + ρσω(χt) log σω,t−1 + εω,t, (44)

where ρσω(χt) is the degree of persistence of uncertainty shocks in the regime χt and εω,t

follows the following distribution:

E(εω,t) = normal(εω,t|0, σσω). (45)
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