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This document contains i) the approximation, solution and estimation of our Markov-

switching DSGE model; ii) data description and transformation; iii) a detailed description of

each method for computing the marginal data density. This supplement is not self-contained.

We strongly advise the readers to read the main paper.

Appendix A. Markov-switching DSGE model: Solution and Estimation

A.1. Log-linearization. The log-deviations of the stationary variable ζt from its steady

state value is denoted ζ̂t and defined as ζ̂t = logζt − logζ, except for ẑ ≡ zt − γ.

A log-linear approximation of the solution to the firms’ price-setting problem is expressed

as follows

π̂t =
β

1 + γpβ
Etπ̂t+1 +

γp
1 + γpβ

π̂t−1 +
(1− θpβ)(1− θp)
θp(1 + γpβ)

ŵt + θ̂t (1)

This above equation, known as the New-Keynesian Phillips Curve (NKPC), relates the cur-

rent inflation to the lagged inflation π̃t−1, the expected inflation rate Etπ̃t+1, and the real

marginal cost s̃t. The last block of parameters κ = (1−θpβ)(1−θp)

θp(1+γpβ)
is widely interpreted as

the slope of the Phillips curve; i.e., a measure of nominal rigidity. It is worth noting that

this slope is inversely correlated with the parameter that determines the frequency of price

changes, θp.

The other log-linearized equilibrium conditions are as follows

λ̂t =
hβeγ

(eγ − hβ)(eγ − h)
Etŷt+1 −

eγ2 + h2β

(eγ − hβ)(eγ − h)
ŷt +

heγ

(eγ − hβ)(eγ − h)
ŷt−1

+
hβeγρz − heγ

(eγ − hβ)(eγ − h)
ẑt +

eγ − hβρb
(eγ − hβ)

b̂t (2)

λ̂t =R̂t + Et

(
λ̂t+1 − π̂t+1

)
− ρz ẑt (3)
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ŵt =ηŷt + b̂t − λ̂t (4)

where (2) is the marginal utility equation with λ̂t denoting the marginal utility of consump-

tion; (3) is the Euler equation; and (4) is the labor supply equation. The monetary policy

rule is given by

R̃t = ρRR̃t−1 + (1− ρR) [ψπ(π̃4,t − π̃∗t ) + ψy (ỹt − ỹ∗t )] + εR,t (5)

where ỹ∗t denotes the output of the economy with flexible prices. The equations (1), (2), (3),

(4), and (5) describe the evolution of the economy conditional on the stochastic processes for

the shocks x̂t = ρxx̂t + εx,t, with x ∈ {z, θ, b, π∗}. The stochastic process for monetary policy

has already been specified in (5).

A.2. Solution method. The solution proposed by Cho (2011) exploits the idea of the for-

ward method for solving MS-DSGE models whereas the method by Farmer, Waggoner, and

Zha (2009) and Farmer, Waggoner, and Zha (2011) exploit Newton’s method to find all

possible Minimum State Variable (MSV) solutions. When the model is determinate, both

methods return the same solution. Using the algorithm solution of Farmer, Waggoner, and

Zha (2011), we obtain the solution of the Markov-switching rational expectations model in

the following way

ft = V (st)F1(st)ft−1 + V (st)G1(st)εt (6)

where

[
A(i)V (i) Π

] F1(i)

F2(i)

 = B(i)
[
A(i)V (i) Π

] G1(i)

G2(i)

 = Ψ(i) (7)

and (
h∑
i=1

pi,jF2(i)

)
V (j) = 0 (8)

We find an MSV equilibrium by finding the matrices Vi, then the matrices F1,i, F2,i, G1,i,

and G2,i. If equation (8) is satisfied, we obtain a MSV equilibrium.

A.3. Constructing the posterior distribution. To form the posterior density, denoted

p(θ|YT ), we combine the overall likelihood function p(YT |θ) with the prior p(θ)

p(θ|YT ) ∝ p(YT |θ)p(θ) (9)
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where θ contains all the parameters. The evaluation of the overall likelihood function is

obtained using the Kim and Nelson (1999) filter, which is a combination of the Kalman filter

and the Hamilton (1989) filter. Let p(yt|st, st−1, ψt−1, θ) the conditional likelihood function

given st, st−1 and the past information ψt−1. By integrating st and st−1 out, the likelihood

function at date ] t is as follows

p(yt|ψt−1, θ) =
∑
st

∑
st−1

p(yt|st, st−1, ψt−1, θ)Pr[st, st−1|ψt−1] (10)

with

Pr[st, st−1|ψt−1] = Pr[st|st−1]Pr[st−1|ψt−1] (11)

where Pr[st|st−1] is the transition probability described previously. We then update the joint

probability term in the following way

Pr[st, st−1|ψt] =
f(yt, st, st−1|ψt−1)

f(yt|ψt−1)
=
f(yt|st, st−1, ψt−1)Pr(st, st−1|ψt−1)

f(yt|ψt−1)
(12)

and finally obtain the probability term given the information at date t

Pr[st|ψt] =
∑
st−1

Pr[st, st−1|ψt−1] (13)

The conditional likelihood function, p(yt|st, st−1, ψt−1), cannot be evaluated with the standard

Kalman filter. If in the constant case, the updated forecasts of the unobserved state vector,

βt, and the updated mean squared error of forecast Pt depend only on the information set

ψt, in a case with Markov switching elements, these forecasts are also conditioned on the

unobserved state st = j and st−1 = i. It follows that, at each iteration, the number of βt and

Pt to consider increases, which makes the Kalman filter unfeasible. In each step, we then

collapse these h2 terms in order to make the evaluation feasible. This approximation allows

to make inference on βt based on information ψt−1, given only st−1. See Kim and Nelson

(1999) for more details. The overall likelihood is

p(YT |θ) =
T∏
t=1

p(yt|ψt−1, θ) (14)

Once the parameters of the model are estimated, we follow Kim (1994) and Kim and

Nelson (1999) and make inference on sT , (t = 1, ..., T ), the smoothed probabilities, in the
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following way

Pr[st = j|ψT ] =
M∑
k=1

Pr[st = j, st+1 = i|ψT ] (15)

where

Pr[st = j, st+1 = i|ψT ] =
Pr[st+1 = i|ψt].Pr[st = j|ψt].Pr[st+1 = i|st = j]

Pr[st+1 = i|ψt]
(16)

The advantage of such a method is that it allows us to infer the unobservable variable st

using all the information in the sample.



ONLINE APPENDIX 5

Appendix B. Data

The data used for estimation includes quarterly data from the third quarter of 1954 to

the second quarter of 2009. Inflation πt is the first log-difference of the GDP deflator; the

nominal interest rate Rt is the Federal Funds rate; and the output growth ∆yt is the first log-

difference of real per capita GDP. This latter is obtained by dividing real GDP (GDPC96) by

population (LF and LH). All data comes from the St. Louis Federal Reserve Bank database

(FRED). The series are reported in Figure 1.
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Figure 1. Sample period: 1954.Q3-2009.Q2. The shaded grey columns de-
note the NBER recessions.
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Appendix C. Marginal Data Densities

In Bayesian analysis, Marginal Data Density (MDD) is a tool commonly used for compar-

ison between models. The general idea behind this is as follows: We know that posterior

density can be written as

P (θ|Y ) =
P (Y |θ)P (θ)

P (Y )
(17)

We know that true posterior is ∫
P (θ|Y )dθ = 1 (18)

which makes ∫
P (Y |θ)P (θ)dθ = P (Y ) (19)

and if we use some proposal density Pprop(θ) which integrates to 1 we can deduce that∫
Pprop(θ)

P (Y |θ)P (θ)

P (Y |θ)P (θ)

P (Y )
dθ =

1

P (Y )
(20)

we can define m(θ) = Pprop(θ)

P (Y |θ)P (θ)
and since we know that P (Y |θ)P (θ)

P (Y )
dθ = P (θ|Y ) and is true

density integrating to 1 we can conclude that

1

P (Y )
=
∞∑
i=0

m(θi) (21)

The closer proposed density is to posterior kernel, more accurate results are obtained. In

addition when one looks at the formulas, it is clear that the higher marginal data density, the

closer estimated posterior is to the “true” posterior. Thus it allows us to compare models in

a most efficient way.

C.1. Geweke (1999) method. We follow Geweke method for our first calculation and

choose Pprop(θ) to be truncated Normal. First, we run a random-walk Metropolis-Hastings

algorithm and generate a significant number of posterior draws θt. Using twenty percent of

these draws, we compute certain statistics, such as mode θ̂ for each estimated parameter and

the analogue of the variance-covariance matrix, we center it around θ̂ instead of the mean.

V =
1

T

T∑
t=1

(θt − θ̂)(θt − θ̂)′ (22)

The reason for this choice of centering is the fact that in the Markov-switching world mean

is often located in a low probability region. It stands to reason that if everything is centered
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around the mean truncation used for this method, it would cut “too much” of the distribution

when creating proposal distribution. Thus most of the posterior draws would fall within the

zero-probability region of posterior distribution.

After we obtain these statistics, we create proposal density using truncated Normal cen-

tered around θ̂ and scaled by V (−1) Using the rest of the posterior draws, we evaluate posterior

and proposal densities at these draws, obtaining Ppost(θ) and Pprop(θ). Using these values,

we proceed by computing

MDD =
1

T

T∑
t=1

(
Pprop(θt)

Ppost(θt)
) (23)

C.2. Waggoner and Zha (2008) method. Since in practice posteriors estimated for the

parameters in a Markov-switching framework are often highly non-Gaussian, we are using a

new modified harmonic mean method for proposed by Sims, Waggoner, and Zha (2008)cal-

culations of MDD. We first proceed by generating posterior draws from the posterior dis-

tribution using the Random-Walk Metropolis-Hastings algorithm. We then make proposal

draws from normal distribution as our model is fairly small and Gaussian approximation may

give accurate results, even though in the original Sims, Waggoner, and Zha (2008) method

elliptical distribution is used (it includes Gaussian density as a special case). The following

procedure could be used for elliptical distribution:

g(θ) =
Γ(k/2)

2πk/2|det(Ŝ)|
f(r)

rk−1
(24)

where Γ is a standard gamma function and f(r) is a one-dimensional density defined on the

positive reals. Calculations can be done in the following way:

(1) Calculate the statistics of posterior draws from a Metropolis-Hastings algorithm using

20percent of all draws (all other calculations are done using the remaining 80 percent

of draws). For centering, we used posterior mode θ̂. Calculate scale Ŝ =
√

Ω̂, where

Ω̂ is a variance-covariance matrix and radius is

r(i) =

√
(θ(i) − θ̂)′Ω̂−1(θ(i) − θ̂) (25)

Using this radius, calculate other statistics:

• c1 such that 1 percent of ri ≤c1

• c10 such that 10 percent of ri ≤ c10 and
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• c90 such that 90percent of ri ≤ c10

From these statistics calculate parameters a, b and v

a = c1 b =
c90

0.9
1
v

v =
ln(1/9)

ln(c10/c90)
(26)

(2) Using these values, evaluate function g(θ) at posterior draws. It is calculated as:

f(r) =


vr(i)(v−1)

bv−av

0

if r(i) ∈ (a, b)

elsewhere
(27)

(3) Calculate proposal draws from elliptical density and evaluate them at posterior den-

sity. First, simulate draws x from the standard normal distribution. Second, generate

draw u identically and independently from the uniform distribution between [0, 1].

Then we form

r = (u(bv − av) + av)
1
v (28)

Using these x and r we calculate proposal draws

θproposal =
r

||x||
Ŝx+ θ̂ (29)

where x is the random normal and evaluate posterior at these draws.

(4) One can calvulate the weighting function in the same way for any proposal dencity

used.

h(θ) =
χΘL

(θ)

qL
g(θ) (30)

is a truncated proposal distribution. Truncation is done using q̂L, which is estimated

as probability that the posterior evaluated at proposal draws falls within the region:

ΘL = {θ : p(Yt|θ)p(θ) ≥ L} (31)

χΘL
(θ) is an indicator function, which is equal to 1 when posterior density evaluated

at posterior draw falls within ΘL and 0 otherwise. From here we can assess the

overlap between posterior density and weighting function and calculate the marginal

likelihood:

p(YT )−1 =

∫
Θ

h(θ)

p(Yt|θ)p(θ)
p(θ|YT )d(θ) (32)
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Defining m(θ)= h(θ)
p(Yt|θ)p(θ) and using the Monte Carlo integration, we get

p̂(YT )−1 =
1

N

N∑
i=1

m(θ(1)) (33)

In order to check the robustness of our conclusions based on this methodology, we also use the

truncated normal method proposed by Geweke (1999) and find that even though magnitudes

of MDD are different, the rankings of the models stay the same.

We are using the procedure described above for truncation; however instead of an eliptical

distribution, we are using a normal distribution.

C.3. Bridge method. Meng and Wong (1996) propose a generalization of the importance

sampling method; the so-called “bridge sampling”. This technique combines the Markov

Chain Monte Carlo (MCMC) draws from the posterior probability density function (pdf)

with the draws from the weighting function (or importance density) through a bridge function

α(.) that reweighs both functions. Their method is based on the following result:

p(YT ) =
Eq(α(θ)p∗(θ))

Ep(α(θ)h(θ))
(34)

where α(θ) is an arbitrary function and p∗(θ) the posterior kernel such that p∗(θ|Yt) =

p(YT |θ)p(θ).

It follows that the estimator [p̂(YT )] is called the general bridge sampling estimator

p̂(YT ) =

1
Np

∑Np

j=1 α(θj)p∗(θ(j))

1
Nh

∑Np

i=1 α(θi)h(θ(i))
(35)

where Nh is the number of draws from the weighting density and Np is the number of draws

from the posterior distribution.

Once all draws from the importance density h(θ) and MCMC draws from the posterior

density p(θ|YT ) have been made, one can easily calculate p̂(YT ). Meng and Wong (1996)

proposes the following bridge function:

α(θ) ∝ 1

Nhh(θ) +Npp(θ|YT )
(36)
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